Abstract

This paper presents a study of the oil flow in a vertically arranged FZG gearbox. The splash and churning losses are experimentally evaluated using measurements of the resistance torque. Using high-speed imaging, the instantaneous oil splashing inside the gearbox is also presented and compared to computational fluid dynamics (CFD) results from the lattice-Boltzmann method with the volume of fluid model, instead of the traditional finite volume method. Four different configurations, including a spur gear based on the standard FZG geometry and a disc pair wheel-pinion with the same tip diameters of the standard geometries, are used. The experiments cover a range from 500 to 3000 rpm and three oil levels are studied. For the CFD simulations, the same oil levels and rotational speeds are used. The experimental results indicate torque differences depending on the oil level and the configuration. The splashing pattern is also different from the standard horizontal FZG case, which is typically studied in the literature. On the other hand, the CFD simulations and flow visualization experiments are in relative agreement with one another. The similarities and differences in the torque values for the different configurations and the splashing pattern for both experiments and CFD simulations are analyzed and discussed.

References

1.
Dindar
,
A.
,
Chaudhury
,
K.
,
Hong
,
I.
,
Kahraman
,
A.
, and
Wink
,
C.
,
2021
, “
An Experimental Methodology to Determine Components of Power Losses of a Gearbox
,”
ASME J. Tribol.
,
143
(
11
), p.
111203
.
2.
Neurouth
,
A.
,
Changenet
,
C.
,
Ville
,
F.
, and
Octrue
,
M.
,
2014
, “
Is Splash Lubrication Compatible With Efficient Gear Units for Highspeed Applications?
,”
The 2014 International Gear Conference
,
Lyon, France
,
Aug. 24–28
, pp.
1060
1068
.
3.
Höhn
,
B.
,
Michaelis
,
K.
, and
Otto
,
H.
,
2008
, “
Influence of Immersion Depth of Dip Lubricated Gears on Power Loss, Bulk Temperature and Scuffing Load Carrying Capacity
,”
Int. J. Mech. Mater. Des.
,
4
(
2
), pp.
145
156
.
4.
Boness
,
R. J.
,
1989
, “
Churning Losses of Discs and Gears Running Partially Submerged in Oil
,”
Proceedings of the 1989 International Power Transmission and Gearing Conference
,
Chicago, IL
,
Apr. 25–28
, Vol. 1, pp.
355
359
.
5.
Changenet
,
C.
, and
Velex
,
P.
,
2007
, “
A Model for the Prediction of Churning Losses in Geared Transmissions—Preliminary Results
,”
ASME J. Mech. Des.
,
129
(
1
), pp.
128
133
.
6.
Concli
,
F.
, and
Gorla
,
C.
,
2016
, “
Numerical Modeling of the Power Losses in Geared Transmissions: Windage, Churning and Cavitation Simulations With a New Integrated Approach That Drastically Reduces the Computational Effort
,”
Tribol. Int.
,
103
, pp.
58
68
.
7.
Mauz
,
W.
,
1987
, “
Hydraulische Verluste von Stirnradgetrieben bei Umfangsgeschwindigkeiten bis 60 m/s
,”
IMK, Universitt Stuttgart
.
8.
Hartono
,
E. A.
,
Golubevand
,
M.
, and
Chernoray
,
V.
,
2013
, “
PIV Study of Fluid Flow Inside a Gearbox
,”
10th International Symposium on Particle Image Velocimetry
,
Delft, The Netherlands
,
July 1–3
.
9.
Quiban
,
R.
,
Changenet
,
C.
,
Marchesse
,
Y.
, and
Ville
,
F.
,
2021
, “
Experimental Investigations About the Power Loss Transition Between Churning and Windage for Spur Gears
,”
ASME J. Tribol.
,
143
(
2
), p.
024501
.
10.
Cruz
,
J. A. O.
,
Marques
,
P. M. T.
,
Seabra
,
J. H. O.
, and
Castro
,
J. D.
,
2022
, “
No-load Power Loss of a Rear Axle Gear Transmission: Measurement and Validation
,”
ASME J. Tribol.
,
144
(
9
), p.
091202
.
11.
Mo
,
J.
,
Gu
,
C.
,
Pan
,
X.
,
Zheng
,
S.
, and
Ying
,
G.
,
2018
, “
A Thermohydrodynamic Analysis of the Self-Lubricating Bearings Applied in Gear Pumps Using Computational Fluid Dynamics Method
,”
ASME J. Tribol.
,
140
(
1
), p.
011102
.
12.
Fatourehchi
,
E.
,
Shahmohamadi
,
H.
,
Mohammadpour
,
M.
,
Rahmani
,
R.
,
Theodossiades
,
S.
, and
Rahnejat
,
H.
,
2018
, “
Thermal Analysis of an Oil Jet-Dry Sump Transmission Gear Under Mixed-Elastohydrodynamic Conditions
,”
ASME J. Tribol.
,
140
(
5
), p.
051502
.
13.
Mo
,
S.
,
Zhou
,
C.
, and
Dang
,
H.
,
2022
, “
Lubrication Effect of the Nozzle Layout for Arc Tooth Cylindrical Gears
,”
ASME J. Tribol.
,
144
(
3
), p.
031202
.
14.
Narumi
,
Y.
,
Ishimoto
,
J.
,
Kanayama
,
D.
,
Kuribara
,
H.
, and
Nakano
,
Y.
,
2023
, “
Computational Fluid–Structure Interaction Analysis of Piston Pin Multiphase Elastohydrodynamic Lubrication With Unsteady Flow Channel Variation
,”
ASME J. Tribol.
,
145
(
2
), p.
021603
.
15.
Liu
,
J.
,
Ni
,
H.
,
Zhou
,
R.
,
Li
,
X.
,
Xing
,
Q.
, and
Pan
,
G.
,
2023
, “
A Simulation Analysis of Ball Bearing Lubrication Characteristics Considering the Cage Clearance
,”
ASME J. Tribol.
,
145
(
4
), p.
044301
.
16.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.
17.
Mohamad
,
A. A.
,
2011
,
Lattice Boltzman Method: Fundamentals and Engineering Applications With Computer Codes
,
Springer
,
London
.
18.
Körner
,
C.
,
Thies
,
M.
,
Hofmann
,
T.
,
Thürey
,
N.
, and
Rüde
,
U.
,
2005
, “
Lattice Boltzmann Model for Free Surface Flow for Modeling Foaming
,”
J. Stat. Phys.
,
121
(
1–2
), pp.
179
196
.
19.
Suzuki
,
K.
, and
Inamuro
,
T.
,
2011
, “
Effect of Internal Mass in the Simulation of a Moving Body by the Immersed Boundary Method
,”
Comput. Fluids
,
49
(
1
), pp.
173
187
.
20.
Shan
,
X.
, and
Chen
,
H.
,
1993
, “
Lattice Boltzmann Model for Simulating Flows With Multiple Phases and Components
,”
Phys. Rev. E
,
47
(
3
), p.
1815
1819
.
21.
Xue
,
X.
,
Sbragaglia
,
M.
,
Biferale
,
L.
, and
Toschi
,
F.
,
2018
, “
Effects of Thermal Fluctuations in the Fragmentation of a Nanoligament
,”
Phys. Rev. E
,
98
(
1
), p.
012802
.
22.
Chiappini
,
D.
,
Sbragaglia
,
M.
,
Xue
,
X.
, and
Falcucci
,
G.
,
2019
, “
Hydrodynamic Behavior of the Pseudopotential Lattice Boltzmann Method for Interfacial Flows
,”
Phys. Rev. E
,
99
(
5
), p.
053305
.
23.
He
,
X.
, and
Luo
,
L.-S.
,
1997
, “
Theory of the Lattice Boltzmann Method: From the Boltzmann Equation to the Lattice Boltzmann Equation
,”
Phys. Rev. E
,
56
(
6
), pp.
6811
6817
.
24.
Hartono
,
E. A.
,
Pavlenko
,
A.
, and
Chernoray
,
V.
,
2014
, “
Stereo-PIV Study of Oil Flow Inside a Model Gearbox
,”
17th International Symposium on Applications of Laser Techniques to Fluid Mechanics
,
Lisbon, Portugal
,
July 7–10
.
25.
International Organization for Standardization
,
2000
, “
Gears-FZG Test Procedure—Part 1: FZG Gear Test Method a/8,3/90 for Relative Lead Carrying Capacity of Oils
,” Standard DIN ISO 14635-1.
26.
Ataei
,
M.
,
Shaayegan
,
V.
,
Costa
,
F.
,
Han
,
S.
,
Park
,
C.
, and
Bussmann
,
M.
,
2021
, “
LBfoam: An Open-Source Software Package for the Simulation of Foaming Using the Lattice Boltzmann Method
,”
Comput. Phys. Commun.
,
259
, p.
107698
.
27.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.
28.
Shao
,
X.
,
Santasmasas
,
M. C.
,
Xue
,
X.
,
Niu
,
J.
,
Davidson
,
L.
,
Revell
,
A.
, and
Yao
,
H.-D.
,
2022
, “
Near-Wall Modeling of Forests for Atmosphere Boundary Layers Using Lattice Boltzmann Method on GPU
,”
Eng. Appl. Comput. Fluid Mech.
,
16
(
1
), pp.
2142
2155
.
29.
Xue
,
X.
,
Yao
,
H.-D.
, and
Davidson
,
L.
,
2022
, “
Synthetic Turbulence Generator for Lattice Boltzmann Method at the Interface Between RANS and LES
,”
Phys. Fluids
,
34
(
5
), p.
055118
.
30.
Mei
,
R.
,
Shyy
,
W.
,
Yu
,
D.
, and
Luo
,
L.-S.
,
2000
, “
Lattice Boltzmann Method for 3-D Flows With Curved Boundary
,”
J. Comput. Phys.
,
161
(
2
), pp.
680
699
.
31.
Kandhai
,
D.
,
Koponen
,
A.
,
Hoekstra
,
A.
,
Kataja
,
M.
,
Timonen
,
J.
, and
Sloot
,
P.
,
1999
, “
Implementation Aspects of 3D Lattice-BGK: Boundaries, Accuracy, and a New Fast Relaxation Method
,”
J. Comput. Phys.
,
150
(
2
), pp.
482
501
.
32.
Xue
,
X.
,
Yao
,
H.-D.
, and
Davidson
,
L.
,
2023
, “
Wall-Modeled Large-Eddy Simulation Integrated With Synthetic Turbulence Generator for Multiple-Relaxation-Time Lattice Boltzmann Method
,”
Phys. Fluids
,
35
(
6
), p.
065115
.
33.
Wang
,
Z.
,
Fan
,
J.
, and
Luo
,
K.
,
2008
, “
Combined Multi-direct Forcing and Immersed Boundary Method for Simulating Flows With Moving Particles
,”
Int. J. Multiphase Flow
,
34
(
3
), pp.
283
302
.
34.
Changenet
,
C.
,
Leprince
,
G.
,
Ville
,
F.
, and
Velex
,
P.
,
2011
, “
A Note on Flow Regimes and Churning Loss Modelling
,”
Proceedings of the ASME 2011 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
Washington, DC
,
Aug. 28–31
, p.
055118
.
35.
Granville
,
P. S.
,
1982
, “
Drag-Characterization Method for Arbitrarily Rough Surfaces by Means of Rotating Disks
,”
ASME J. Fluid Eng.
,
104
(
3
), pp.
373
377
.
36.
Nelka
,
J. J.
,
1973
, “
Evaluation of a Rotating Disk Apparatus: Drag of a Disk Rotating in a Viscous Fluid
,” Report 3851,
Naval Ship Research and Development Center
,
Bethesda, MD
, July.
37.
Atencio
,
B. N.
,
2018
, “
Flow Over Rough Surfaces and Conjugate Heat Transfer in Engineering Applications
,”
PhD thesis
,
Chalmers University of Technology
,
Gothenburg, Sweden
.
38.
Hartono
,
E. A.
,
2019
, “
Experimental Study on Truck Related Power Losses: The Churning Losses in a Transmission Model and Active Flow Control at an A-Pillar of Generic Truck Cabin Model
,”
PhD thesis
,
Chalmers University of Technology
,
Gothenburg, Sweden
.
You do not currently have access to this content.