Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

To improve the signal transmission quality, copper matrix composites added with different contents of carbon nanotubes (CNTs) and molybdenum disulfide (MoS2) were prepared. The electrical and tribological properties of composites were studied. A new parameter, the correlation dimension of electrical noise, was proposed to quantitatively characterize the stability of signal transmission. Copper matrix composites added with reasonable amount of CNTs and MoS2 can effectively reduce the values and fluctuations of friction coefficient and improve the wear resistance, efficiency, and stability of the signal transmission. Tribo-films are generated on the surface of composites. The contents of CNTs and MoS2 affect the stability of tribo-film and further affect the signal transmission quality. 0.5 wt% CNTs and 15 wt% MoS2 can make good synergistic effects on improving the signal transmission quality of composites. The results provide good guidance to improve the signal transmission quality of wind pitch slip rings.

References

1.
Yasar
,
I.
,
Canakci
,
A.
, and
Arslan
,
F.
,
2007
, “
The Effect of Brush Spring Pressure on the Wear Behavior of Copper–Graphite Brushes With Electrical Current
,”
Tribol. Int.
,
40
(
9
), pp.
1381
1386
.
2.
Argibay
,
N.
,
Bares
,
J. A.
, and
Sawyer
,
W. G.
,
2007
, “
Asymmetric Wear Behavior of Self-Mated Copper Fiber Brush and Slip-Ring Sliding Electric Contacts in a Humid Carbon Dioxide Environment
,”
Wear
,
268
(
3–4
), pp.
455
463
.
3.
Barkan
,
P.
, and
Tuohy
,
E. J.
,
1965
, “
A Contact Resistance Theory for Rough Hemispherical Silver Contacts in Air and in Vacuum
,”
IEEE Trans. Power Appar. Syst.
,
84
(
12
), pp.
1132
1143
.
4.
Xie
,
X. L.
,
Zhang
,
L.
,
Xiao
,
J. K.
,
Qian
,
Z. Y.
,
Zhang
,
T.
, and
Zhou
,
K. C.
,
2015
, “
Sliding Electric Contact Behavior of AuAgCu Brush on Au Plating
,”
Trans. Nonferrous Met. Soc. China
,
25
(
9
), pp.
3029
3036
.
5.
Grandin
,
M.
, and
Wiklund
,
U.
,
2018
, “
Wear Phenomena and Tribofilm Formation of Copper/Copper-Graphite Sliding Electric Contact Materials
,”
Wear
,
398–399
, pp.
227
235
.
6.
Kalin
,
M.
, and
Poljanec
,
D.
,
2018
, “
Influence of the Contact Parameters and Several Graphite Materials on the Tribological Behaviour of Graphite/Copper Two-Disc Electric Contacts
,”
Tribol. Int.
,
126
, pp.
192
205
.
7.
Zhang
,
S.
,
Kang
,
H.
,
Cheng
,
M.
,
Jiang
,
Y.
,
Cao
,
F.
,
Guo
,
E.
,
Chen
,
Z.
,
Liang
,
S.
, and
Wang
,
T.
,
2018
, “
A Research on the Electrical Sliding Behavior Wear of Dual-Scale Particulate Reinforced Copper Matrix Composites
,”
Mater. Charact.
,
184
, p.
111708
.
8.
Radhika
,
N.
, and
Sam
,
M.
,
2019
, “
Tribological and Wear Performance of Centrifuge Cast Functional Graded Copper Based Composite at Dry Sliding Conditions
,”
J. Cent. South Univ. T
,
26
(
11
), pp.
2961
2973
.
9.
Güler
,
O.
,
Varol
,
T.
,
Alver
,
Ü
,
Kaya
,
G.
, and
Yıldız
,
F.
,
2021
, “
Microstructure and Wear Characterization of Al2O3 Reinforced Silver Coated Copper Matrix Composites by Electroless Plating and Hot Pressing Methods
,”
Mater. Today Commun.
,
27
, p.
102205
.
10.
Zhang
,
L.
,
Xiao
,
J.
, and
Zhou
,
K.
,
2012
, “
Sliding Wear Behavior of Silver–Molybdenum Disulfide Composite
,”
Tribol. Trans.
,
55
(
4
), pp.
473
480
.
11.
Imtiaz
,
S.
,
Siddiq
,
M.
,
Kausar
,
A.
,
Muntha
,
S. T.
,
Ambreen
,
J.
, and
Bibi
,
I.
,
2018
, “
A Review Featuring Fabrication, Properties and Applications of Carbon Nanotubes (CNTs) Reinforced Polymer and Epoxy Nanocomposites
,”
Chin. J. Polym. Sci.
,
36
(
4
), pp.
445
461
.
12.
Lau
,
K. T.
, and
Hui
,
D.
,
2002
, “
Effectiveness of Using Carbon Nanotubes as Nano-Reinforcements for Advanced Composite Structures
,”
Carbon
,
40
(
9
), pp.
1605
1606
.
13.
Xu
,
W.
,
Hu
,
R.
,
Li
,
J. S.
, and
Fu
,
H. Z.
,
2011
, “
Effect of Electrical Current on Tribological Property of Cu Matrix Composite Reinforced by Carbon Nanotubes
,”
Trans. Nonferrous Met. Soc. China
,
21
(
10
), pp.
2237
2241
.
14.
Vazirisereshk
,
M. R.
,
Martini
,
A.
,
Strubbe
,
D. A.
, and
Baykara
,
M. Z.
,
2019
, “
Solid Lubrication With MoS2: A Review
,”
Lubricants
,
7
(
7
), p.
57
.
15.
Shangguan
,
B.
,
Zhang
,
Y.
,
Xing
,
J.
,
Sun
,
L.
,
Hu
,
D.
, and
Qiu
,
M.
,
2009
, “Effects of Content of MoS2 on Sliding Tribological Behavior of Copper-Based Powder Metallurgy Materials Under Electrical Current,”
Advanced Tribology
,
J.
Luo
, ed.,
Springer
,
Berlin
, pp.
239
241
.
16.
Cho
,
K. H.
,
Hong
,
U. S.
,
Lee
,
K. S.
, and
Jang
,
H.
,
2007
, “
Tribological Properties and Electrical Signal Transmission of Copper–Graphite Composites
,”
Tribol. Lett.
,
27
(
3
), pp.
301
306
.
17.
Zhao
,
H.
,
Feng
,
Y.
,
Zhou
,
Z.
,
Qian
,
G.
,
Zhang
,
J.
,
Huang
,
X.
, and
Zhang
,
X.
,
2020
, “
Effect of Electrical Current Density, Apparent Contact Pressure, and Sliding Velocity on the Electrical Sliding Wear Behavior of Cu–Ti3AlC2 Composites
,”
Wear
,
444–445
, p.
203156
.
18.
Guo
,
F.
,
Jia
,
W.
,
Chen
,
Z.
,
Wang
,
Z.
,
Yin
,
F.
,
Liu
,
Y.
, and
Xue
,
Y.
,
2010
, “
Experimental Research on Current-Carrying and Friction Characteristics of Sliding Electric Contact
,”
2010 Proceedings of the 56th IEEE Holm Conference on Electric Contacts
,
Charleston, SC
,
Oct. 4–7
, pp, 1–6.
19.
Kogut
,
L.
,
2011
, “
Electrical Performance of Contaminated Rough Surfaces in Contact
,”
J. Appl. Phys.
,
97
(
10
), p.
103723
.
20.
Zhai
,
C.
,
Hanaor
,
D.
,
Proust
,
G.
, and
Gan
,
Y.
,
2017
, “
Stress-Dependent Electric Contact Resistance at Fractal Rough Surfaces
,”
J. Eng. Mech.
,
143
(
3
), p.
B4015001
.
21.
Khemissi
,
B. M.
,
Ouelaa
,
N.
, and
Djebala
,
A.
,
2017
, “
Application of the Empirical Mode Decomposition Method for the Prediction of the Tool Wear in Turning Operation
,”
Mechanics
,
23
(
2
), pp.
315
320
.
22.
Zhou
,
Y.
,
Wen
,
D.
,
Wang
,
Y.
,
Zuo
,
X.
,
Zhu
,
R.
, and
Mia
,
M. F.
,
2024
, “
Tribo-Electrical Properties of Copper Matrix Composites in Salt-Fog Environment
,”
Tribol. Int.
,
192
, p.
109299
.
23.
Qian
,
G.
,
Feng
,
Y.
,
Chen
,
Y. M.
,
Mo
,
F.
,
Wang
,
Y. Q.
, and
Liu
,
W. H.
,
2015
, “
Effect of WS2 Addition on Electrical Sliding Wear Behaviors of Cu–Graphite–WS Composites
,”
Trans. Nonferrous Met. Soc. China
,
25
(
6
), pp.
1986
1994
.
24.
Ma
,
D. Q.
,
Xie
,
J. P.
,
Li
,
J. W.
,
Wang
,
A. Q.
,
Wang
,
W. Y.
,
Zhang
,
Z. C.
, and
Wang
,
Y. J.
,
2012
, “
Study on Electrical Sliding Wear Property of Cu/MoS2/Mo Composites
,”
Appl. Mech. Mater.
,
117–119
, pp.
913
916
. www.scientific.net/AMM.117-119.913
25.
Hirschberg
,
J. H. K.
,
Brunsveld
,
L.
,
Ramzi
,
A.
,
Vekemans
,
J. A. J. M.
,
Sijbesma
,
R. P.
, and
Meijer
,
E. W.
,
2000
, “
Helical Self-Assembled Polymers From Cooperative Stacking of Hydrogen-Bonded Pairs
,”
Nature
,
407
(
6801
), pp.
167
170
.
26.
Song
,
H.
,
Wang
,
B.
,
Zhou
,
Q.
,
Xiao
,
J.
, and
Jia
,
X.
,
2017
, “
Preparation and Tribological Properties of MoS2/Graphene Oxide Composites
,”
Appl. Surf. Sci.
,
419
, pp.
24
34
.
27.
Fu
,
S.
,
Chen
,
X.
, and
Liu
,
P.
,
2010
, “
Preparation of CNTs/Cu Composites With Good Electrical Conductivity and Excellent Mechanical Properties
,”
Mater. Sci. Eng. A
,
771
, p.
138656
.
You do not currently have access to this content.