Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The oil cavity shapes, which represent the spatial structures for storing lubricant in static and dynamic thrust bearings, and offset distances, defined as the horizontal distances between the load center and the bearing rotational axis under eccentric loads, directly impact the flow mode of lubricant, pressure, and temperature distribution during bearing operation, so these are the key factors that influence the lubrication performance and the accuracy of bearings. The equations for flow and load-carrying capacity of the sector, runway, and double rectangular cavities are derived, and mathematical models are established for different cavities at various tilt positions. Then pressure and temperature fields at different offset distances are analyzed. As the offset distances increase, there is a corresponding increase in the maximum pressures within the sector, runway, and double rectangular cavities by 90.5 kPa, 93.3 kPa, and 30.9 kPa, but average pressures show only minor fluctuations. Concurrently, the maximum temperatures within these cavity shapes are observed to increase by 0.5 K, 0.6 K, and 0.8 K, respectively. The results show that appropriate offset distance can improve the lubrication performance. The runway cavity has the highest load-carrying capacity among the three cavity shapes, while the sector cavity experiences the slightest temperature increase. As the temperature increase in all three cavity shapes is small, the runway cavity exhibits superior performance. The error between simulation and experimental results is less than 10%, which verifies the correctness of the simulation method.

References

1.
Michalec
,
M.
,
Svoboda
,
P.
,
Krupka
,
I.
, and
Martin
,
H. M.
,
2021
, “
A Review of the Design and Optimization of Large-Scale Hydrostatic Bearing Systems
,”
Eng. Sci. Technol.
,
24
(
7
), pp.
936
958
.
2.
Stach
,
E.
,
Falta
,
J.
, and
Sulitka
,
M.
,
2016
, “
Analytical Solution of Hydrostatic Pocket Tilting
,”
Appl. Mech. Mater.
,
821
, pp.
113
119
.
3.
Kuhr
,
M. M. G.
,
Nordmann
,
R.
, and
Pelz
,
P. F.
,
2023
, “
Dynamic Force and Moment Characteristics of Annular Gaps-Simulation Results and Evaluation of the Relevance of the Tilt and Moment Coefficients
,”
ASME J. Tribol.
,
145
(
1
), p.
011801
.
4.
Esparz
,
L. F. M.
,
Gortari
,
J. G. C.
, and
Uziel
,
E. J. C.
,
2017
, “
Design of Hybrid Hydrostatic/Hydrodynamic Journal Bearings for Optimum Self-Compensation Under Misaligning External Loads
,”
ASME J. Tribol.
,
139
(
4
), p.
041702
.
5.
Feng
,
H. H.
,
Jiang
,
S. Y.
, and
Ji
,
A. M.
,
2019
, “
Investigations of the Static and Dynamic Characteristics of Water-Lubricated Hydrodynamic Journal Bearing Considering Turbulent, Thermoshydrodynamic and Misaligned Effects
,”
Tribol. Int.
,
130
, pp.
245
260
.
6.
Liu
,
Z.
,
Guo
,
J.
,
Wang
,
Y.
,
Xiangmin
,
D.
,
Wu
,
Y.
,
Yan
,
Z.
, and
Jinlong
,
G.
,
2020
, “
Influence of Rotational Speed of a Heavy-Duty Hydrostatic Turret on Bearing Performance Under Tilt
,”
Ind. Lubr. Tribol.
,
72
(
5
), pp.
575
579
.
7.
Du
,
Y.
,
Mao
,
K.
,
Liu
,
H.
,
Mao
,
X.
, and
Li
,
Z.
,
2018
, “
A Simplified Analytical Method for the Pressure of Tilt Hydrostatic Journal Bearing
,”
Ind. Lubr. Tribol.
,
70
(
6
), pp.
993
1001
.
8.
Liu
,
G. D.
,
Shao
,
J. P.
,
Li
,
T. Y.
,
Hu
,
Y.
, and
Wang
,
Q.
,
2021
, “
Lubrication Performance Comparison of Hydrostatic Thrust Bearing With Different Offset Distances
,”
J. Harbin Univ. Sci. Technol.
,
26
(
3
), pp.
32
37
.
9.
Liu
,
F. K.
, and
Jiang
,
S. Y.
,
2021
, “
Temperature Rise Characteristics of High-Speed Water-Lubricated Hydrostatic Thrust Bearing
,”
J. Phys. Conf. Ser.
,
1906
(
1
), p.
012050
.
10.
Huang
,
H. C.
, and
Yang
,
S. H.
,
2022
, “
Thrust-Bearing Layout Design of a Large-Sized Hydrostatic Rotary Table to Withstand Eccentric Loads for Horizontal Boring Machine Applications
,”
Lubrication
,
10
(
4
), p.
49
.
11.
Yu
,
X. D.
,
Liu
,
C.
, and
Zuo
,
X.
,
2018
, “
Hydrodynamic Compensation of Carrying Capacity in Hydrostatic Thrust Bearing Under Extreme Working Condition
,”
J. Propul. Technol.
,
39
(
5
), pp.
1085
1091
.
12.
Yu
,
X. D.
,
Wu
,
G. P.
,
Zhou
,
W. K.
,
Bi
,
H.
,
Wang
,
Y.
,
Gao
,
W.
,
Wang
,
J.
,
Jiao
,
J.
, and
Jiang
,
H.
,
2021
, “
Inclination Angle Effect of Tribological Performance for Hydrostatic Bearing Having Tilting Oil Pad Under Variable Viscosity Conditions
,”
J. Braz. Soc. Mech. Sci. Eng.
,
43
(
4
), pp.
1
10
.
13.
Li
,
X.
,
Cheng
,
T.
,
Li
,
M.
,
Li
,
M.
,
Wu
,
R.
, and
Wan
,
Y.
,
2017
, “
Theoretical Research on Sector Oil-Pads’ Mechanical Property in Hydrostatic Thrust Bearing Based on Constant Flow
,”
Ind. Lubr. Tribol.
,
69
(
4
), pp.
491
506
.
14.
Zhang
,
Q. F.
,
2021
, “
Oil Film Characteristics Analysis for Hydrostatic Turntable Based on CFD and Oil Chamber Design
,”
Mach. Tool Hyd.
,
49
(
6
), pp.
98
103
.
15.
Ren
,
T. M.
, and
Feng
,
M.
,
2023
, “
Theoretical and Experimental Study on the Stability of Water Lubricated High Speed Journal Bearing With Lobe Pockets
,”
Tribol. Int.
,
187
, p.
8665
.
16.
Kumar
,
V.
, and
Sharma
,
S. C.
,
2019
, “
Magneto-Hydrostatic Lubrication of Thrust Bearings Considering Different Configurations of Recess
,”
Ind. Lubr. Tribol.
,
71
(
7
), pp.
915
923
.
17.
Chen
,
D. J.
,
Cheng
,
K.
,
Dong
,
L.
,
Pan
,
R.
, and
Fan
,
J.
,
2021
, “
Influence of Different Cavities on the Performance of Aerostatic Bearings
,”
MFG Technol. Mach. Tool
, (
05
), pp.
128
133
.
18.
Patnana
,
N.
, and
Nelson
,
N. R.
,
2023
, “
Combined Effect of Recess Shape and Fluid Film Thickness on the Performance Characteristics of Hydrostatic Guideways
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
237
(
5
), pp.
1130
1138
.
19.
Yu
,
X.
,
Zhang
,
R.
,
Zhou
,
D.
,
Zhao
,
Y.
,
Chen
,
M.
,
Han
,
Z.
,
Li
,
S.
, and
Jiang
,
H.
,
2021
, “
Effects of Oil Recess Structural Parameters on Comprehensive Tribological Properties in Multi-Pad Hydrostatic Thrust Bearing for CNC Vertical Processing Equipment Based on Low Power Consumption
,”
Energy Rep.
,
7
, pp.
8258
8264
.
20.
Yu
,
M.
,
Yu
,
X.
,
Zheng
,
X.
,
Qu
,
H.
,
Yuan
,
T.
, and
Li
,
D.
,
2019
, “
Influence of Recess Shape on Comprehensive Lubrication Performance of High Speed and Heavy Load Hydrostatic Thrust Bearing
,”
Ind. Lubr. Tribol.
,
71
(
2
), pp.
301
308
.
21.
Li
,
S. S.
,
Sun
,
J. L.
, and
Cui
,
W.
,
2020
, “
Research on Load Capacity Characteristic of Hybrid Bearings With Herringbone Groove and Micro-Orifice
,”
Lubr. Eng.
,
45
(
6
), pp.
34
38
.
22.
Wang
,
G. Z.
,
Wang
,
W. B.
,
Yu
,
H. H.
,
Li
,
Z.
, and
Zhao
,
Z.
,
2018
, “
Static Characteristics of Hybrid Journal Bearing With Herringbone Slot-Restrictor
,”
Chin. Hyd. Pneu.
, (
5
), pp.
63
68
.
23.
Branagan
,
M.
,
Morgan
,
N.
,
Goyne
,
C.
,
Fittro
,
R.
,
Rockwell
,
R.
, and
He
,
M.
,
2020
, “
Hydrodynamic Performance Characteristics of a Fluid Film Journal Bearing With a Rectangular Jacking Pocket
,”
ASME J. Tribol.
,
142
(
2
), p.
021801
.
24.
Tomar
,
A. K.
, and
Sharma
,
S. C.
,
2022
, “
Non-Newtonian Lubrication of Hybrid Multi-Recess Spherical Journal Bearings With Different Geometric Shapes of Recess
,”
Tribol. Int.
,
171
, p.
107579
.
25.
Michalec
,
M.
,
Ondra
,
M.
,
Svoboda
,
M.
,
Chmelík
,
J.
,
Zeman
,
P.
,
Svoboda
,
P.
, and
Jackson
,
R. L.
,
2023
, “
A Novel Geometry Optimization Approach for Multi-Recess Hydrostatic Bearing Pad Operating in Static and Low-Speed Conditions Using CFD Simulation
,”
Tribol. Lett.
,
71
(
2
), p.
52
.
26.
Long
,
S. W.
,
Wang
,
Y. Q.
,
Zhou
,
Y. B.
, and
Wei
,
C.
,
2018
, “
Optimization Analysis of Hydrostatic Sliding Bearing With Water Lubrication Spiral Step
,”
J. Mech. Transm.
,
42
(
4
), pp.
52
56
.
27.
Mao
,
N. N.
,
Lei
,
Z. D.
, and
Sun
,
Y. Z.
,
2020
, “
Simulation of Gas Hydrostatic High Thrust Bearing Based on CFD
,”
Comput. Simul.
,
37
(
7
), pp.
219
223
.
28.
Tripkewitz
,
F. A.
,
Lazák
,
T.
,
Fritz
,
M.
,
Stach
,
E.
,
Weigold
,
M.
, and
Sulitka
,
M.
,
2023
, “
Experimental and Theoretical Study on the Dynamic Stiffness of Circular Oil Hydrostatic Shallow Recess Thrust Bearings
,”
Tribol. Int.
,
183
, p.
108356
.
29.
Gao
,
S.
,
Shang
,
Y.
,
Gao
,
Q.
,
Lu
,
L.
,
Zhu
,
M.
,
Sun
,
Y.
, and
Yu
,
W.
,
2021
, “
CFD-Based Investigation on Effects of Orifice Length-Diameter Ratio for the Design of Hydrostatic Thrust Bearings
,”
Appl. Sci.
,
11
(
3
), p.
959
.
30.
Yu
,
P. L.
,
Hu
,
J. S.
,
Li
,
S.
,
Li
,
Q.
,
Qianwen
,
H.
, and
Di
,
Y.
,
2019
, “
Study on Static Characteristics of the Aerostatic Bearing With Radial Grooves
,”
Lubr. Eng.
,
44
(
4
), pp.
14
19
.
31.
Rowe
,
W. B.
,
2021
, “
Conical Hydrostatic Journal Bearings for High Speeds
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
235
(
4
), pp.
808
819
.
32.
Jiang
,
J. H.
,
Ji
,
T. J.
,
Li
,
Y.
, and
Zhang
,
D. Q.
,
1998
, “
Research on Viscosity-Temperature Relationship of Hydraulic Oils
,”
Lubr. Eng.
, (
5
), pp.
35
37
.
You do not currently have access to this content.