Abstract

This investigation explored the viability of tribological properties enhancement with the deposition of TiC + TiN nanoparticulate-reinforced hybrid composite claddings in TC4-grade titanium alloy to meet the ever-increasing functional performance requirements employed under aggressive tribological environments. The composite claddings are processed by using the tungsten inert gas cladding process. The tribological performance of the hybrid composite cladding deposition was evaluated against the claddings with simplex reinforcement compositions such as TC4/TiC and TC4/TiN composite claddings and the substrate alloy. Initially, the formation and microstructural characteristics of the composite cladding depositions are studied based on the scanning electron microscope, X-ray diffraction, and energy dispersive spectroscopic analyses to confirm their successful formation. The average microhardness achieved with the deposition of composite claddings such as TiC/TC4, TiN/TC4, and (TiC + TiN)/TC4 is 936.25 HV0.2, 858.88 HV0.2, and 1116. 72 HV0.2, respectively, while the TC4 substrate alloy is about 332.38 HV0.2. The (TiC + TiN)/TC4 hybrid composite cladding composition has shown significantly increased surface hardness which is about 30% and 18%, respectively, compared with the TiC/TC4 and TiN/TC4 composite cladding compositions while about 235% enhancement compared with the TC4 substrate alloy. Compared with the TC4 substrate alloy, the wear resistance enhancement achieved with the deposition of TiC/TC4 and TiN/TC4 composite claddings is up to 22.62% and 38.92%, respectively, while with the (TiC + TiN)/TC4 hybrid composite claddings is up to 49.87%. Similarly, the average CoF of the TC4 substrate alloy, TiC/TC4, TiN/TC4, and (TiC + TiN)/TC4 composite claddings observed are 0.76, 0.49, 0.58, and 0.44, respectively, which indicates that 36%, 23%, and 43% are the enhancements achieved with the respective composite claddings. The SEM analysis of worn surfaces of the composite claddings reveals typical wear mechanisms such as adhesive, abrasive, oxidation, and delamination that are represented by various regions identified on the generated wear maps. The adhesive and delamination wear regions are relatively wider for the TiN/TC4 composite cladding than the TiC/TC4 composite cladding. The wear mechanism of the composite cladding with multiphase TiC and TiN reinforcement particulate has shown an increased prevalence of abrasive wear as a consequence the abrasive wear region is wider while decreasing the window for adhesive and delamination wear.

References

1.
Murmu
,
A. M.
,
Parida
,
S. K.
, and
Das
,
A. K.
,
2021
, “
Synthesis and Characterization of Ti6Al4V-Nano-ZrO2 Composite Cladding on Ti6Al4V Substrate Using Fiber Laser
,”
J. Mater. Eng. Perform.
,
30
(
3
), pp.
1748
1758
.
2.
Chen
,
C.
,
Feng
,
X.
, and
Shen
,
Y.
,
2020
, “
Microstructures and Properties of TiCp/Al Coating Synthesized on Ti–6Al–4V Alloy Substrate Using Mechanical Alloying Method
,”
J. Alloys Compd.
,
813
, pp.
152223
152223
.
3.
Chen
,
T.
,
Li
,
W.
,
Liu
,
D.
,
Xiong
,
Y.
, and
Zhu
,
X.
,
2021
, “
Effects of Heat Treatment on Microstructure and Mechanical Properties of TiC/TiB Composite Bioinert Ceramic Coatings In-Situ Synthesized by Laser Cladding on Ti6Al4V
,”
Ceram. Int.
,
47
(
1
), pp.
755
768
.
4.
Yan
,
H.
,
Liu
,
K.
,
Zhang
,
P.
,
Zhao
,
J.
,
Qin
,
Y.
,
Lu
,
Q.
, and
Yu
,
Z.
,
2020
, “
Fabrication and Tribological Behaviors of Ti3SiC2/Ti5Si3/TiC/Ni-Based Composite Coatings by Laser Cladding for Self-Lubricating Applications
,”
Opt. Laser Technol.
,
126
, p.
106077
.
5.
Li
,
R.
,
Niu
,
P.
,
Yuan
,
T.
,
Cao
,
P.
,
Chen
,
C.
, and
Zhou
,
K.
,
2018
, “
Selective Laser Melting of an Equiatomic CoCrFeMnNi High-Entropy Alloy: Processability, Non-Equilibrium Microstructure and Mechanical Property
,”
J. Alloys Compd.
,
746
, pp.
125
134
.
6.
Hu
,
T.
,
Hu
,
L.
, and
Ding
,
Q.
,
2012
, “
Effective Solution for the Tribological Problems of Ti-6Al-4V: Combination of Laser Surface Texturing and Solid Lubricant Film
,”
Surf. Coat. Technol.
,
206
(
24
), pp.
5060
5066
.
7.
Zhou
,
H.
,
Li
,
F.
,
He
,
B.
,
Wang
,
J.
, and
Sun
,
B.
,
2007
, “
Air Plasma Sprayed Thermal Barrier Coatings on Titanium Alloy Substrates
,”
Surf. Coat. Technol.
,
201
(
16–17
), pp.
7360
7367
.
8.
Liu
,
Y. Z.
, and
Hu
,
X. B.
,
2020
, “
Segregation and Microstructural Evolution at Interfaces of Atmospheric Plasma Sprayed Thermal Barrier Coatings During Thermal Cycling
,”
J. Alloys Compd.
,
819
(
Apr.
), pp.
153026
153026
.
9.
Ma
,
Y.-D.
,
Wang
,
X.-Y.
,
Sun
,
X.-W.
,
Yang
,
Y.
,
Zhang
,
C.
,
Gao
,
P.-Y.
, et al
,
2020
, “
Microstructure and Properties Evolution of Plasma Sprayed Al2O3-ZrO2-TiO2 Coatings During High Temperature and Thermal Shock Resistance
,”
Mater. High Temp.
,
37
(
4
), pp.
256
267
.
10.
Lashmi
,
P. G.
,
Ananthapadmanabhan
,
P. V.
,
Unnikrishnan
,
G.
, and
Aruna
,
S. T.
,
2020
, “
Present Status and Future Prospects of Plasma Sprayed Multilayered Thermal Barrier Coating Systems
,”
J. Eur. Ceram. Soc.
,
40
(
8
), pp.
2731
2745
.
11.
Ranjan
,
S.
,
Mukherjee
,
B.
,
Islam
,
A.
,
Pandey
,
K. K.
,
Gupta
,
R.
, and
Keshri
,
A. K.
,
2020
, “
Microstructure, Mechanical and High Temperature Tribological Behaviour of Graphene Nanoplatelets Reinforced Plasma Sprayed Titanium Nitride Coating
,”
J. Eur. Ceram. Soc.
,
40
(
3
), pp.
660
671
.
12.
Marchin
,
N.
, and
Ashrafizadeh
,
F.
,
2021
, “
Effect of Carbon Addition on Tribological Performance of TiSiN Coatings Produced by Cathodic Arc Physical Vapour Deposition
,”
Surf. Coat. Technol.
,
407
, p.
126781
.
13.
Luan
,
G. D. A.
,
Haring
,
G. M.
, and
Eiji
,
C.
,
2021
, “
Surface Integrity of Machined AISI D2 Steel and Its Effect on the Adhesion of a PVD-AlCrN Coating
,”
Int. J. Adv. Manuf. Technol.
,
112
(
9–10
), pp.
2705
2715
.
14.
Zhao
,
Y.
,
Lu
,
M.
,
Fan
,
Z.
,
McCormick
,
P.
,
Tan
,
Q.
,
Mo
,
N.
, et al
, “
Microstructures and Mechanical Properties of Wear-Resistant Titanium Oxide Coatings Deposited on Ti-6Al-4V Alloy Using Laser Cladding
,”
J. Eur. Ceram. Soc.
,
40
(
3
), pp.
798
810
.
15.
He
,
Q.
,
DePaiva
,
J. M.
,
Kohlscheen
,
J.
,
Beake
,
B. D.
, and
Veldhuis
,
S. C.
,
2021
, “
Study of Wear Performance and Tribological Characterization of AlTiN PVD Coatings With Different Al/Ti Ratios During Ultra-High Speed Turning of Stainless Steel 304
,”
Int. J. Refract. Met. Hard Mater.
,
96
, pp.
105488
105488
.
16.
Song
,
W.
,
Wang
,
S.
,
Lu
,
Y.
,
An
,
L.
,
Zhang
,
Q.
,
Sun
,
K.
, et al
,
2021
, “
Tribological Performance of DLC-Coated Ceramics Against Cemented Carbide Under Dry Sliding Conditions
,”
Ceram. Int.
,
47
(
12
), pp.
16926
16934
.
17.
Zhao
,
P.
,
Li
,
J.
,
Zhang
,
Y.
,
Li
,
X.
,
Xia
,
M. M.
, and
Yuan
,
B. G.
,
2021
, “
Wear and High-Temperature Oxidation Resistances of AlNbTaZrx High-Entropy Alloys Coatings Fabricated on Ti6Al4V by Laser Cladding
,”
J. Alloys Compd.
,
862
, p.
158405
.
18.
Wei
,
M.
,
Yu
,
H.
,
Song
,
Z.
,
Yin
,
Y.
,
Zhou
,
X.
,
Wang
,
H.
, et al
,
2021
, “
Microstructural Evolution, Mechanical Properties and Wear Behavior of In-Situ TiC-Reinforced Ti Matrix Composite Coating by Induction Cladding
,”
Surf. Coat. Technol.
,
412
, pp.
127048
127048
.
19.
Bao
,
Y.
,
Huang
,
L.
,
An
,
Q.
,
Jiang
,
S.
,
Zhang
,
R.
,
Geng
,
L.
, et al
,
2019
, “
Metal Transfer and Microstructure Evolution During Wire-Feed Deposition of TiB/Ti Composite Coating
,”
J. Mater. Process. Technol.
,
274
, pp.
116298
116298
.
20.
An
,
Q.
,
Huang
,
L.
,
Jiang
,
S.
,
Li
,
X.
,
Gao
,
Y.
,
Liu
,
Y.
, et al
,
2017
, “
Microstructure Evolution and Mechanical Properties of TIG Cladded TiB Reinforced Composite Coating on Ti-6Al-4V Alloy
,”
Vacuum
,
145
, pp.
312
319
.
21.
Ouyang
,
J. H.
,
Nowotny
,
S.
,
Richter
,
A.
, and
Beyer
,
E.
,
2001
, “
Characterization of Laser Clad Yttria Partially-Stabilized ZrO2 Ceramic Layers on Steel 16MnCr5
,”
Surf. Coat. Technol.
,
137
(
1
), pp.
12
20
.
22.
An
,
Q.
,
Huang
,
L.
,
Yang
,
J.
,
Yang
,
B.
,
Zhong
,
B.
, and
Li
,
G.
,
2019
, “
Intergrowth Microstructure and Superior Wear Resistance of (TiB + TiC)/Ti64 Hybrid Coatings by Gas Tungsten Arc Cladding
,”
Mater. Des.
,
162
, pp.
34
44
.
23.
Sun
,
G. F.
,
Zhou
,
R.
,
Zhang
,
Y. K.
,
Yuan
,
G. D.
,
Wang
,
K.
,
Ren
,
X. D.
, and
Wen
,
D. P.
,
2014
, “
Microstructure Evolution and Lubricant Wear Performance of Laser Alloyed Layers on Automobile Engine Chains
,”
Opt. Laser Technol.
,
62
, pp.
20
31
.
24.
Monfared
,
A.
,
Kokabi
,
A. H.
, and
Asgari
,
S.
,
2013
, “
Microstructural Studies and Wear Assessments of Ti/TiC Surface Composite Coatings on Commercial Pure Ti Produced by Titanium Cored Wires and TIG Process
,”
Mater. Chem. Phys.
,
137
(
3
), pp.
959
966
.
25.
Patel
,
P.
,
Mridha
,
S.
, and
Baker
,
T. N.
,
2014
, “
Influence of Shielding Gases on Preheat Produced in Surface Coatings Incorporating SiC Particulates Into Microalloy Steel Using TIG Technique
,”
Mater. Sci. Technol.
,
30
(
12
), pp.
1506
1514
.
26.
Tijo
,
D.
,
Masanta
,
M.
, and
Das
,
A. K.
,
2018
, “
IN-Situ TiC-TiB2 Coating on Ti-6Al-4V Alloy by Tungsten Inert Gas (TIG) Cladding Method: Part-I. Microstructure Evolution
,”
Surf. Coat. Technol.
,
344
, pp.
541
552
.
27.
Saroj
,
S.
,
Sahoo
,
C. K.
,
Tijo
,
D.
,
Kumar
,
K.
, and
Masanta
,
M.
,
2017
, “
Sliding Abrasive Wear Characteristic of TIG Cladded TiC Reinforced Inconel 825 Composite Coating
,”
Int. J. Refract. Met. Hard Mater.
,
69
, pp.
119
130
.
28.
Sahu
,
A.
,
Raheem
,
A.
,
Masanta
,
M.
, and
Sahoo
,
C. K.
,
2020
, “
On the Constancy in Wear Characteristic of Large Area TiC–Ni Coating Developed by Overlapping of TIG Arc Scanning
,”
Tribol. Int.
,
151
, p.
106501
.
29.
Tavoosi
,
M.
, and
Arjmand
,
S.
,
2017
, “
In Situ Formation of Al/Al3Ti Composite Coating on Pure Ti Surface by TIG Surfacing Process
,”
Surf. Interfaces
,
8
, pp.
1
7
.
30.
Chen
,
C.
,
Feng
,
X.
, and
Shen
,
Y.
,
2017
, “
Synthesis of Al–B4C Composite Coating on Ti–6Al–4V Alloy Substrate by Mechanical Alloying Method
,”
Surf. Coat. Technol.
,
321
, pp.
8
18
.
31.
Huang
,
J.
,
Liu
,
S.
,
Yu
,
S.
,
Yu
,
X.
,
Chen
,
H.
, and
Fan
,
D.
,
2020
, “
Arc Deposition of Wear Resistant Layer TiN on Ti6Al4V Using Simultaneous Feeding of Nitrogen and Wire
,”
Surf. Coat. Technol.
,
381
, pp.
125141
125141
.
32.
Song
,
R.
,
Li
,
J.
,
Shao
,
J. Z.
,
Bai
,
L. L.
,
Chen
,
J. L.
, and
Qu
,
C. C.
,
2015
, “
Microstructural Evolution and Wear Behaviors of Laser Cladding Ti2 Ni/α(Ti) Dual-Phase Coating Reinforced by TiB and TiC
,”
Appl. Surf. Sci.
,
355
, pp.
298
309
.
33.
Liang
,
J.
,
Yin
,
X.
,
Lin
,
Z.
,
Chen
,
S.
,
Liu
,
C.
, and
Wang
,
C.
,
2020
, “
Microstructure and Wear Behaviors of Laser Cladding In-Situ Synthetic (TiBx+TiC)/(Ti2Ni + TiNi) Gradient Composite Coatings
,”
Vacuum
,
176
, pp.
109305
109305
.
34.
Patil
,
A. S.
,
Hiwarkar
,
V. D.
,
Verma
,
P. K.
, and
Khatirkar
,
R. K.
,
2019
, “
Effect of TiB2 Addition on the Microstructure and Wear Resistance of Ti-6Al-4V Alloy Fabricated Through Direct Metal Laser Sintering (DMLS)
,”
J. Alloys Compd.
,
777
, pp.
165
173
.
35.
Geng
,
L.
,
Ni
,
D. R.
,
Zhang
,
J.
, and
Zheng
,
Z. Z.
,
2008
, “
Hybrid Effect of TiBw and TiCp on Tensile Properties of In Situ Titanium Matrix Composites
,”
J. Alloys Compd.
,
463
(
1–2
), pp.
488
492
.
36.
Joijode
,
K. K.
,
Rao
,
T. B.
, and
Konjeti
,
R. K.
,
2022
, “
The Microstructural Properties and Tribological Performance of Al2O3 and TiN Nanoparticles Reinforced Ti–6Al–4V Composite Coating Deposited on AISI304 Steel by TIG Cladding
,”
ASME J. Tribol.
,
145
(
1
), p.
011401
.
37.
Hedenqvist
,
P.
,
Olsson
,
M.
,
Wallén
,
P.
,
Kassman
,
A.
,
Hogmark
,
S.
, and
Jacobson
,
S.
,
1990
, “
How TiN Coatings Improve the Performance of High Speed Steel Cutting Tools
,”
Surf. Coat. Technol.
,
41
(
2
), pp.
243
256
.
38.
Su
,
J.
,
Yu
,
D.
,
Nie
,
X.
, and
Hu
,
H. M.
,
2011
, “
Inclined Impact–Sliding Wear Tests of TiN/Al2O3/TiCN Coatings on Cemented Carbide Substrates
,”
Surf. Coat. Technol.
,
206
(
7
), pp.
1998
2004
.
39.
Gu
,
J.
,
Barber
,
G.
,
Tung
,
S.
, and
Gu
,
R.-J.
,
1999
, “
Tool Life and Wear Mechanism of Uncoated and Coated Milling Inserts
,”
Wear
,
225–229
, pp.
273
284
.
40.
Qin
,
J.
,
Long
,
Y.
,
Zeng
,
J.
, and
Wu
,
S.
,
2014
, “
Continuous and Varied Depth-of-Cut Turning of Gray Cast Iron by Using Uncoated and TiN/Al2O3 Coated Silicon Nitride-Based Ceramic Tools
,”
Ceram. Int.
,
40
(
8
), pp.
12245
12251
.
41.
Prasad
,
R.
,
Waghmare
,
D. T.
,
Kumar
,
K.
, and
Masanta
,
M.
,
2020
, “
Effect of Overlapping Condition on Large Area NiTi Layer Deposited on Ti-6Al-4V Alloy by TIG Cladding Technique
,”
Surf. Coat. Technol.
,
385
, p.
125417
.
42.
Waghmare
,
D. T.
,
Padhee
,
C. K.
,
Prasad
,
R.
, and
Masanta
,
M.
,
2018
, “
NiTi Coating on Ti-6Al-4V Alloy by TIG Cladding Process for Improvement of Wear Resistance: Microstructure Evolution and Mechanical Performances
,”
J. Mater. Process. Technol.
,
262
, pp.
551
561
.
43.
Falodun
,
O. E.
,
Obadele
,
B. A.
,
Oke
,
S. R.
,
Oluremi IGE
,
O.
,
Olubambi
,
P. A.
, et al
,
2018
, “
Influence of Spark Plasma Sintering on Microstructure and Wear Behaviour of Ti-6Al-4V Reinforced With Nanosized TiN
,”
Trans. Nonferrous Met. Soc. China
,
28
(
1
), pp.
47
54
.
44.
Foadian
,
F.
,
Soltanieh
,
M.
,
Adeli
,
M.
, and
Etminanbakhsh
,
M.
,
2016
, “
The Kinetics of TiAl3 Formation in Explosively Welded Ti-Al Multilayers During Heat Treatment
,”
Metall. Mater. Trans. B
,
47
(
5
), pp.
2931
2937
.
45.
Naghiyan Fesharaki
,
M.
,
Shoja-Razavi
,
R.
,
Mansouri
,
H. A.
, and
Jamali
,
H.
,
2018
, “
Microstructure Investigation of Inconel 625 Coating Obtained by Laser Cladding and TIG Cladding Methods
,”
Surf. Coat. Technol.
,
353
, pp.
25
31
.
46.
Sahoo
,
C. K.
, and
Masanta
,
M.
,
2017
, “
Microstructure and Mechanical Properties of TiC-Ni Coating on AISI304 Steel Produced by TIG Cladding Process
,”
J. Mater. Process. Technol.
,
240
, pp.
126
137
.
47.
Tjong
,
S. C.
, and
Lau
,
K. C.
,
1999
, “
Sliding Wear of Stainless Steel Matrix Composite Reinforced With TiB2 Particles
,”
Mater. Lett.
,
41
(
4
), pp.
153
158
.
48.
Rao
,
T. B.
,
2021
, “
Microstructural, Mechanical, and Wear Properties Characterization and Strengthening Mechanisms of Al7075/SiCnp Composites Processed Through Ultrasonic Cavitation Assisted Stir-Casting
,”
Mater. Sci. Eng. A
,
805
, p.
140553
.
49.
He
,
X.
,
Song
,
R. G.
, and
Kong
,
D. J.
,
2019
, “
Effects of TiC on the Microstructure and Properties of TiC/TiAl Composite Coating Prepared by Laser Cladding
,”
Opt. Laser Technol.
,
112
, pp.
339
348
.
50.
Hefnawy
,
A.
,
Elkhoshkhany
,
N.
, and
Essam
,
A.
,
2018
, “
Ni–TiN and Ni-Co-TiN Composite Coatings for Corrosion Protection: Fabrication and Electrochemical Characterization
,”
J. Alloys Compd.
,
735
, pp.
600
606
.
51.
Zhu
,
S.
,
Yu
,
Y.
,
Zhang
,
B.
,
Zhang
,
Z.
,
Yan
,
X.
, and
Wang
,
Z.
,
2020
, “
Microstructure and Wear Behaviour of In-Situ TiN-Al2O3 Reinforced CoCrFeNiMn High-Entropy Alloys Composite Coatings Fabricated by Plasma Cladding
,”
Mater. Lett.
,
272
, pp.
127870
127870
.
You do not currently have access to this content.