Abstract

Surface topography represents a critical barrier to the advancement of additive manufacturing (AM). Because some internal features cannot be polished, and because of a growing trend of in situ process monitoring, it is important to understand the as-built surface topography of AM components. Here we highlight the challenges of using industry-standard surface-measurement techniques on binder-jet-printed parts. We measured the topography of binder-jet-printed Inconel Alloy 625 samples in their green state and over the course of sintering; this system allowed the investigation of identical starting materials undergoing systematic changes in topography. Specifically, we compared the results from industry-standard surface-measurement techniques—optical interferometry, 3D microscopy (by fringe projection), and stylus profilometry—against the “true topography,” as revealed by cross-section scanning electron microscopy. While the true topography changed significantly with sintering, the industry-standard techniques detected no change in root-mean-square height because of complex surface features, including multi-scale topography, overhangs, and steep surface slopes. While these findings do not invalidate the use of industry-standard techniques for binder-jet-printed samples, they demonstrate a challenge in their application, and they motivate the development of new metrics and new techniques to more accurately describe surface topography in AM.

This content is only available via PDF.