Abstract

Understanding the endwall flow phenomena surrounding low-pressure turbine blades is key to improving performance, as these flow features contribute significantly to loss generation at low Reynolds number cruise. It is well documented that a horseshoe vortex system forms at the junction of the endwall and turbine blade. The vortices develop and gain significant strength in the passage and contribute to total pressure losses. During low Reynolds number conditions, the flow through a low-pressure turbine passage can be greatly impacted by a number of factors, including Reynolds number and incoming turbulence. The focus of this paper is on significant changes to the endwall flow field observed in experimental measurements and an accompanying implicit large-eddy simulation of the flow through a linear cascade of high-lift front-loaded low-pressure turbine blades at low Reynolds number. Results show a significant effect on both the time-averaged endwall flow topology and the unsteady vortical flow characteristics when the Reynolds number based on inlet conditions was decreased to 30,000. Various techniques, such as spectral proper orthogonal decomposition, were used to analyze and compare both high-speed particle image velocimetry measurements and numerical results in order to extract the dominant structures and their unsteady behavior. The total pressure loss development through the passage was assessed in order to better understand how the observed changes in endwall flow structures contribute to the overall losses.

References

1.
Howell
,
R. J.
,
Hodson
,
H. P.
,
Schulte
,
V.
,
Stieger
,
R. D.
,
Schiffer
,
H.-P.
,
Haselbach
,
F.
, and
Harvey
,
N. W.
,
2002
, “
Boundary Layer Development in the BR710 and BR715 LP Turbines—The Implementation of High-Lift and Ultra-High-Lift Concepts
,”
ASME J. Turbomach.
,
124
(
3
), pp.
385
392
.
2.
Curtis
,
E. M.
,
Hodson
,
H. P.
,
Banieghbal
,
M.
,
Denton
,
J. D.
,
Howell
,
R. J.
, and
Harvey
,
N. W.
,
1997
, “
Development of Blade Profiles for Low-Pressure Turbine Applications
,”
ASME J. Turbomach.
,
119
(
3
), pp.
531
538
.
3.
Lyall
,
M. E.
,
King
,
P. I.
,
Sondergaard
,
R.
,
Clark
,
J. P.
, and
McQuilling
,
M. W.
,
2012
, “
An Investigation of Reynolds Lapse Rate for Highly Loaded Low Pressure Turbine Airfoils Wforward and Aft Loading
,”
ASME J. Turbomach.
,
134
(
5
), p.
051035
.
4.
Haselbach
,
F.
,
Schiffer
,
H. P.
,
Horsman
,
M.
,
Dressen
,
S.
,
Harvey
,
N.
, and
Read
,
S.
,
2002
, “
The Application of Ultra High Lift Blading in the BR715 LP Turbine
,”
ASME J. Turbomach.
,
124
(
1
), pp.
45
51
.
5.
Praisner
,
T. J.
,
Allen-Bradley
,
E.
,
Grover
,
E. A.
, and
Knezevici
,
D. C.
,
2013
, “
Application of Nonaxisymmetric Endwall Contouring to Conventional and High-Lift Turbine Airfoils
,”
ASME J. Turbomach.
,
135
(
6
), p.
061006
.
6.
Vera
,
M.
,
Zhang
,
X. F.
,
Hodson
,
H.
, and
Harvey
,
N.
,
2007
, “
Separation and Transition Control on an Aft-Loaded Ultra-High-Lift LP Turbine Blade at Low Reynolds Numbers: High-Speed Validation
,”
ASME J. Turbomach.
,
129
(
2
), pp.
340
347
.
7.
Gier
,
J.
,
Franke
,
M.
,
Hubner
,
N.
, and
Schroder
,
T.
,
2010
, “
Designing Low Pressure Turbines for Optimized Airfoil Lift
,”
ASME J. Turbomach.
,
132
(
3
), p.
031008
.
8.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
9.
Bear
,
P.
,
Wolff
,
M.
,
Gross
,
A.
,
Marks
,
C. R.
, and
Sondergaard
,
R.
,
2017
, “
Experimental Investigation of Total Pressure Loss Development in a Highly Loaded Low-Pressure Turbine Cascade
,”
ASME J. Turbomach.
,
140
(
3
), p.
031003
.
10.
Gross
,
A.
, and
Robison
,
Z.
,
2018
, “
Numerical Simulations of Turbulent Junction Flow
,” AIAA Aviation Forum, Paper No. 2018-3866.
11.
Langston
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R. M.
,
1977
, “
Three-Dimensional Flow Within a Turbine Cascade Passage
,”
ASME J. Eng. Power
,
99
(
1
), pp.
21
28
.
12.
Langston
,
L. S.
,
2001
, “
Secondary Flows in Axial Turbines – A Review
,”
Heat Transfer Gas Turbine Syst.
,
934
(
1
), pp.
11
26
.
13.
Sharma
,
O. P.
, and
Butler
,
T. L.
,
1987
, “
Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades
,”
ASME J. Turbomach.
,
109
(
2
), pp.
229
236
.
14.
Sieverding
,
C. H.
,
1985
, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
248
257
.
15.
Chung
,
J. T.
,
1991
, “
Three-Dimensional Flow Near the Blade/Endwall Junction of a Gas Turbine: Application of a Boundary Layer Fence
,” Proceedings of the ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition, Paper No. 91-GT-045.
16.
Gross
,
A.
,
Marks
,
C. R.
, and
Sondergaard
,
R.
,
2017
, “
Numerical Investigation of Low-Pressure Turbine Junction Flow
,”
AIAA J.
,
55
(
10
), pp.
3617
3621
.
17.
Praisner
,
T. J.
, and
Smith
,
C. R.
,
2006
, “
The Dynamics of the Horseshoe Vortex and Associated Endwall Heat Transfer—Part I: Temporal Behavior
,”
ASME J. Turbomach.
,
128
(
4
), pp.
747
754
.
18.
Fletcher
,
N.
,
Marks
,
C. R.
, and
Donovan
,
M. H.
,
2020
, “
Secondary Flow Response to Endwall Jets in a Low Pressure Turbine
,” Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, pp.
1
13
, Paper No. GT2020-15284.
19.
Donovan
,
M.
,
Wolff
,
M.
,
Marks
,
C. R.
,
Sondergaard
,
R.
, and
Veley
,
E.
,
2019
, “
Periodic Forcing of an Endwall Vortex in a Highly Loaded Low Pressure Turbine
,” AIAA Scitech 2019 Forum, Paper No. 2019-0621.
20.
Dickel
,
J.
,
Marks
,
C. R.
,
Sondergaard
,
R.
, and
Wolff
,
M.
,
2018
, “
Optimization of a Non-Axisymmetric Endwall Contour for Front-Loaded High-Lift Low Pressure Turbines
,” AIAA Scitech 2018 Forum, Paper No. 2018-4918.
21.
Lyall
,
M. E.
,
King
,
P. I.
,
Clark
,
J. P.
, and
Sondergaard
,
R.
,
2014
, “
Endwall Loss Reduction of High Lift Low Pressure Turbine Airfoils Using Profile Contouring—Part I: Airfoil Design
,”
ASME J. Turbomach.
,
136
(
8
), p.
081005
.
22.
Sangston
,
K.
,
Little
,
J.
,
Lyall
,
M. E.
, and
Sondergaard
,
R.
,
2014
, “
End Wall Loss Reduction of High Lift Low Pressure Turbine Airfoils Using Profile Contouring—Part II: Validation
,”
ASME J. Turbomach.
,
136
(
8
), p.
081006
.
23.
Binder
,
A.
,
Schroeder
,
T.
, and
Hourmouziadis
,
J.
,
1989
, “
Turbulence Measurements in a Multistage Low-Pressure Turbine
,”
ASME J. Turbomach.
,
111
(
2
), pp.
153
161
.
24.
Gand
,
F.
,
Deck
,
S.
,
Brunet
,
V.
, and
Sagaut
,
P.
,
2010
, “
Flow Dynamics Past a Simplified Wing Body Junction
,”
Phys. Fluids
,
22
(
11
), p.
115111
.
25.
Wang
,
H. P.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1997
, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomach.
,
119
(
1
), pp.
1
8
.
26.
Cui
,
J.
,
Rao
,
V. N.
, and
Tucker
,
P.
,
2016
, “
Numerical Investigation of Contrasting Flow Physics in Different Zones of a High-Lift Low-Pressure Turbine Blade
,”
ASME J. Turbomach.
,
138
(
1
), p.
011003
.
27.
Praisner
,
T. J.
, and
Smith
,
C. R.
,
2006
, “
The Dynamics of the Horseshoe Vortex and Associated Endwall Heat Transfer—Part II: Time-Mean Results
,”
ASME J. Turbomach.
,
128
(
4
), pp.
755
762
.
28.
Devenport
,
W.
, and
Simpson
,
R.
,
1990
, “
Time-Dependent and Timeaveraged Turbulence Structure Near the Nose of a Wing-Body Junction
,”
J. Fluid Mech.
,
210
(
1
), pp.
23
25
.
29.
Sabatino
,
D. R.
, and
Smith
,
C. R.
,
2009
, “
Boundary Layer Influence on the Unsteady Horseshoe Vortex Flow and Surface Heat Transfer
,”
ASME J. Turbomach.
,
131
(
1
), p.
011015
.
30.
Agui
,
J. H.
, and
Andreopoulos
,
J.
,
1992
, “
Experimental Investigation of a Three-Dimensional Boundary Layer Flow in the Vicinity of an Upright Wall Mounted Cylinder
,”
ASME J. Turbomach.
,
114
(
4
), pp.
566
576
.
31.
Donovan
,
M. H.
,
Rumpfkeil
,
M. P.
,
Marks
,
C. R.
, and
Fletcher
,
N.
,
2021
, “
Investigation of Elevated Turbulence on High-Lift Low Pressure Turbine Endwall Flows
,” AIAA Scitech 2021 Forum, Paper No. 2021-0389.
32.
Schmitz
,
J. T.
,
Morris
,
S. C.
,
Ma
,
R.
,
Corke
,
T. C.
,
Clark
,
J. P.
,
Koch
,
P. J.
, and
Puterbaugh
,
S. L.
,
2010
, “
Highly Loaded Low-Pressure Turbine: Design, Numerical, and Experimental Analysis
,” Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air, Paper No. GT2010-23591.
33.
Mcquilling
,
M. W.
,
2007
, “Design and Validation of a High-Lift Low-Pressure Turbine Blade,” Ph.D. dissertation,
Wright State University
,
Dayton, OH
, July.
34.
Gross
,
A.
, and
Fasel
,
H. F.
,
2008
, “
High-Order-Accurate Numerical Method for Complex Flows
,”
AIAA. J
,
46
(
1
), pp.
204
214
.
35.
Gross
,
A.
, and
Fasel
,
H. F.
,
2008
, “
Multi-block Poisson Grid Generator for Cascade Simulations
,”
Math. Comput. Simul.
,
79
(
3
), pp.
416
428
.
36.
Robison
,
Z.
, and
Gross
,
A.
,
2021
, “
Numerical Investigation of Low-Pressure Turbine Cascade With Unsteady Wakese
,”
Aerosp. J.
,
8
(
7
), p.
184
.
37.
Gross
,
A.
,
Marks
,
C. R.
,
Sondergaard
,
R.
,
Bear
,
P. S.
, and
Wolff
,
J. M.
,
2018
, “
Experimental and Numerical Characterization of Flow Through Highly Loaded Low-Pressure Turbine Cascade
,”
J. Propul. Power
,
34
(
1
), pp.
27
39
.
38.
Gross
,
A.
, and
Fasel
,
H. F.
,
2007
, “
Characteristic Ghost-Cell Boundary Conditions
,”
AIAA J.
,
45
(
1
), pp.
302
306
.
39.
Jarrin
,
N.
,
Benhamadouche
,
S.
,
Laurence
,
D.
, and
Prosser
,
R.
,
2006
, “
A Synthetic-Eddy-Method for Generating Inflow Conditions for Large-Eddy Simulations
,”
Int. J. Heat Fluid Flow
,
27
(
4
), pp.
585
593
.
40.
Poletto
,
R.
,
Craft
,
T.
, and
Revell
,
A.
,
2013
, “
A New Divergence Free Synthetic Eddy Method for the Reproduction of Inlet Flow Conditions for LES
,”
Flow Turbul. Combust.
,
91
(
3
), pp.
519
539
.
41.
Hunt
,
J. C. R.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,” Proceedings of the Summer Program 1988, pp.
193
208
, Paper No. N89-24555.
42.
Gross
,
A.
,
Marks
,
C. R.
,
Sondergaard
,
R.
,
Bear
,
P. S.
, and
Wolff
,
J. M.
,
2018
, “
Experimental and Numerical Characterization of Flow Through Highly Loaded Low-Pressure Turbine Cascade
,”
J. Propul. Power
,
34
(
1
), pp.
27
29
.
43.
Marks
,
C. R.
,
Fletcher
,
N.
, and
Sondergaard
,
R.
,
2022
, “
Vortex Unsteadiness in the Endwall Region of a High-Lift Turbine Passage
,” ASME Turbo Expo, Paper No. GT2022-79335.
44.
Scott
,
M.
,
2019
, “Turbine Passage Vortex Response to Upstream Periodic Disturbances,” M.S. thesis,
Wright State University
,
Dayton, OH
.
45.
Welch
,
P. D.
,
1967
, “
The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms
,”
IEEE Trans. Audio Electroacoust.
,
15
(
2
), pp.
70
73
.
46.
Towne
,
A.
,
Schmmidt
,
O. T.
, and
Colonius
,
T.
,
2018
, “
Spectral Proper Orthogonal Decomposition and Its Relationship to Dynamic Mode Decomposition and Resolvent Analysis
,”
J. Fluid Mech.
,
847
, pp.
821
867
.
47.
Donovan
,
M. H.
,
Rumpfkeil
,
M. P.
,
Gunasekaran
,
S.
, and
Marks
,
C. R.
,
2022
, “
Analysis of High-Lift Low Pressure Turbine Endwall Vortices Using Modal Decomposition Methods
,”
AIAA SCITECH 2022 Forum
,
San Diego, CA & Virtual
,
Jan. 3–7
, pp.
1
13
.
48.
Regert
,
T.
,
Rambaudand
,
P.
, and
Riethmuller
,
M. L.
,
2005
, “
Investigation of the Link Between Physics and Pod Modes
,”
Technical Report, NATO, April, Report Number MP-AVT-124-04
.
49.
Chen
,
H.
,
Reuss
,
D. L.
, and
Sick
,
V.
,
2012
, “
On the Use and Interpretation of Proper Orthogonal Decomposition of In-Cylinder Engine Flows
,”
Meas. Sci. Technol.
,
23
(
8
), p.
085302
.
50.
Marks
,
C. R.
,
Sondergaard
,
R.
,
Bear
,
P. S.
, and
Wolff
,
M.
,
2016
, “
Reynolds Number Effects on the Secondary Flow of Profile Contoured Low Pressure Turbines
,” AIAA SciTech 2016 Forum, Paper No. AIAA 2016-0114.
You do not currently have access to this content.