Abstract

This paper presents an assessment of the effect of nonaxisymmetric fan exit guide vanes (FEGVs) to mitigate, or even reduce to zero, the impact of circumferential flow distortion—such as created by boundary layer ingestion (BLI)—on fan rotor efficiency and vibratory structural forcing. The fan response to circumferential nonuniformities is characterized, for two-dimensional flow, in terms of the variations in incidence angle and unsteady rotor forces. FEGV designs with nonaxisymmetric exit flow angle perturbations can eliminate either of these. More importantly, nonaxisymmetric stator row designs can reduce both nonuniformities relative to the influence of an axisymmetric stator row. This suggests that design for distortion need not involve a tradeoff between performance and aeromechanics; a nonaxisymmetric aerodynamic design approach can improve both simultaneously. Analysis of the impact of stage design parameters has been carried out to determine FEGV exit flow angle variations that shield the rotor from the adverse effects of circumferential distortions representative of BLI. The results indicate that inlet distortion effects can be mitigated with realizable nonaxisymmetric FEGVs. The magnitude of the geometry variations required decreases with decreased axial rotor–stator spacing and increased flow coefficient.

References

1.
Betz
,
A.
,
1966
,
Introduction to the Theory of Flow Machines
,
Pergamon Press
,
New York
.
2.
Smith
,
L. H.
,
1993
, “
Wake Ingestion Propulsion Benefit
,”
AIAA J. Propul. Power
,
9
(
1
), pp.
74
82
.
3.
Hall
,
D. K.
,
Huang
,
A. C.
,
Uranga
,
A.
,
Greitzer
,
E. M.
,
Drela
,
M.
, and
Sato
,
S.
,
2017
, “
Boundary Layer Ingestion Propulsion Benefit for Transport Aircraft
,”
AIAA J. Propul. Power
,
33
(
5
), pp.
1118
1129
.
4.
Liebeck
,
R. H.
,
2004
, “
Design of the Blended Wing Body Subsonic Transport
,”
AIAA J. Aircr.
,
41
(
1
), pp.
10
25
.
5.
Hall
,
C. A.
, and
Crichton
,
D.
,
2007
, “
Engine Design Studies for a Silent Aircraft
,”
ASME J. Turbomach.
,
129
(
3
), pp.
479
487
.
6.
Felder
,
J. L.
,
Brown
,
G. V.
,
Kim
,
H. D.
, and
Chu
,
J.
,
2011
, “
Turboelectric Distributed Propulsion in a Hybrid Wing Body Aircraft
,” ISABE Paper No. 2011-1340.
7.
Drela
,
M.
,
2011
, “
Development of the D8 Transport Configuration
,”
29th AIAA Applied Aerodynamics Conference
, AIAA Paper No. 2011-3970.
8.
Welstead
,
J. R.
, and
Felder
,
J. L.
,
2016
, “
Conceptual Design of a Single-Aisle Turboelectric Commercial Transport With Fuselage Boundary Layer Ingestion
,”
54th AIAA Aerospace Sciences Meeting
, AIAA Paper No. 2016-1027.
9.
Hall
,
D. K.
,
Greitzer
,
E. M.
,
Uranga
,
A.
,
Drela
,
M.
, and
Pandya
,
S.
,
2022
, “
Inlet Flow Distortion in an Advanced Civil Transport Boundary Layer Ingesting Engine Installation
,”
ASME J. Turbomach.
,
144
(
10
), p.
101002
.
10.
Hall
,
D. K.
, and
Lieu
,
M. K.
,
2021
, “
Propulsor Models for Computational Analysis of Aircraft Aerodynamic Performance With Boundary Layer Ingestion
,”
AIAA SciTech 2021 Forum
, AIAA Paper No. 2021-0991.
11.
Longley
,
J. P.
, and
Greitzer
,
E. M.
,
1992
, “
Inlet Distortion Effects in Aircraft Propulsion System Integration
,”
Steady and Transient Performance Prediction of Gas Turbine Engines (AGARD Lecture Series, Vol. 183), Advisory Group for Aerospace Research and Development
,
Neuilly sur Seine
,
France
, pp.
6-1-18
.
12.
Gunn
,
E. J.
, and
Hall
,
C. A.
,
2014
, “
Aerodynamics of Boundary Layer Ingesting Fans
,”
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
, ASME Paper No. GT2014-26142.
13.
Perovic
,
D.
, and
Hall
,
C. A.
,
2019
, “
Stall Inception in a Boundary Layer Ingesting Fan
,”
ASME J. Turbomach.
,
141
(
9
), p.
091007
.
14.
Fidalgo
,
V. J.
,
Hall
,
C. A.
, and
Colin
,
Y.
,
2012
, “
A Study of Fan-Distortion Interaction Within the NASA Rotor 67 Transonic Stage
,”
ASME J. Turbomach.
,
134
(
5
), p.
051011
.
15.
Florea
,
R. V.
,
Matalanis
,
C.
,
Hardin
,
L. W.
,
Stucky
,
M.
, and
Sahvvier
,
A.
,
2015
, “
Parametric Analysis and Design for Embedded Engine Inlets
,”
AIAA J. Propul. Power
,
31
(
3
), pp.
843
850
.
16.
Ochs
,
S. S.
,
Tillman
,
G.
,
Joo
,
J.
, and
Voytovych
,
D. M.
,
2017
, “
Computational Fluid Dynamics-Based Analysis of Boundary Layer Ingesting Propulsion
,”
AIAA J. Propul. Power
,
33
(
2
), pp.
522
530
.
17.
Chen
,
G. T.
,
Greitzer
,
E. M.
, and
Epstein
,
A. H.
,
1987
, “
Enhancing Compressor Distortion Tolerance by Asymmetric Stator Control
,”
23rd Joint Propulsion Conference
, AIAA Paper No. 87-2093.
18.
Hall
,
D. K.
,
Greitzer
,
E. M.
, and
Tan
,
C. S.
,
2017
, “
Analysis of Fan Stage Conceptual Design Attributes for Boundary Layer Ingestion
,”
ASME J. Turbomach.
,
139
(
7
), p.
071012
.
19.
Gunn
,
E. J.
, and
Hall
,
C. A.
,
2019
, “
Nonaxisymmetric Stator Design for Boundary Layer Ingesting Fans
,”
ASME J. Turbomach.
,
141
(
7
), p.
071010
.
20.
Kodama
,
H.
,
1986
, “
Performance of Axial Compressor With Nonuniform Exit Static Pressure
,”
ASME J. Turbomach.
,
108
(
1
), pp.
76
81
.
21.
Parry
,
A. B.
,
1996
, “
Optimisation of Bypass Fan Outlet Guide Vanes
,”
ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition
, ASME Paper No. 96-GT-433.
22.
Hall
,
K. C.
, and
Clark
,
W. S.
,
1993
, “
Linearized Euler Predictions of Unsteady Aerodynamic Loads in Cascades
,”
AIAA J.
,
31
(
3
), pp.
540
550
.
23.
Hall
,
K. C.
,
Thomas
,
J. P.
, and
Clark
,
W. S.
,
2002
, “
Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique
,”
AIAA J.
,
40
(
5
), pp.
879
886
.
24.
Smith
,
S. F.
,
1965
, “
A Simple Correlation of Turbine Efficiency
,”
Aeronaut. J.
,
69
(
655
), pp.
467
470
.
25.
Rannie
,
W. D.
, and
Marble
,
F. E.
,
1957
, “
Unsteady Flows in Axial Turbomachines
,”
Communication aux Journées Internationales de Sciences Aéronautiques, Paris
,
May 27–29
, pp.
1
21
.
You do not currently have access to this content.