Abstract

Online water washing represents an operation strategy commonly used to reduce compressor performance deterioration due to blade fouling. Since this kind of washing is applied when the machine operates close to full load conditions, injected droplets are strongly accelerated and consequently impact the rotor blades at high velocity, thus inducing undesirable phenomena like erosion. Here, we present a novel technique to study long-term water droplets erosion by also considering the geometry modification caused by droplets impacts. Two-phase unsteady numerical simulations were carried out, considering the injection of water droplets and their transport across the fluid flow in the first part of a real compressor, which is modeled in the region extending from the inlet to the rotor blades of the first stage. Simulations are performed on the whole machine to account for the asymmetric distribution of the spray injectors, the machine struts, inlet guide vanes (IGVs), and rotor blades. The k−ɛ realizable turbulence model with standard wall functions was coupled with the discrete phase model to track injected droplets motion. Droplets-wall interaction is modeled following the Stanton–Rutland approach aiming at detecting the effect of droplet impact (deposit, rebound, and splashing) depending on the impact conditions. Moreover, a semi-empirical erosion model developed by the authors was used to evaluate the erosion induced by the droplets injection. Material removal due to erosion is converted into nodal mesh displacement that is used by a secondary routine to implement the mesh morphing scheme. The mesh modification is applied at discrete steps to reduce the computational load. This technique is adopted to account for the blades geometry modification due to water droplet erosion leading to performance losses. Moreover, an estimation of the compressor operating life before maintenance operations is given and the water washing efficiency during the whole life of the machine is evaluated by means of proper indices. At the end of the simulation workflow, erosion phenomena are observed in all the compressor regions, especially in the rotor where erosion peaks are reached at the hub of the blades leading edge. The rotor blades wet surface was found to remain almost constant at around 50% during compressor water washing. Erosive phenomena were proved to evolve nonlinearly with time indicating the need to account for the geometry modification for obtaining an accurate prediction of the long-time process.

References

1.
Aker
,
G. F.
, and
Saravanamuttoo
,
H. I. H.
,
1989
, “
Predicting Gas Turbine Performance Degradation Due to Compressor Fouling Using Computer Simulation Technique
,”
ASME J. Eng. Gas Turbine Power
,
111
(
2
), pp.
343
350
.
2.
Meher-Homji
,
C. B.
,
Chaker
,
M. A.
, and
Motiwala
,
H. M.
,
2001
, “
Gas Turbine Performance Deterioration
,”
Proceedings of 30th Turbomachinery Symposium
, Texas A&M University, Turbomachinery Laboratories, pp.
139
175
.
3.
Song
,
T. W.
,
Sohn
,
J. L.
,
Kim
,
T. S.
,
Kim
,
J. H.
, and
Ro
,
S. T.
,
2003
, “
An Improved Analytic Model to Predict Fouling Phenomena in the Axial Compressor of Gas Turbine Engines
,”
Proceedings of the International Gas Turbines Congress
, Paper No. IGTC2003Tokyo TS-095.
4.
Madsen
,
S.
, and
Bakken
,
L. E.
,
2018
, “
Gas Turbine Fouling Off-Shore; Effective Online Water Wash Through High Water-to-Air Ratio
,”
Proceedings of the ASME Turbo Expo 2018
,
Oslo, Norway
,
June 11–15
.
5.
Dominizi
,
I.
,
Gabriele
,
S.
,
Serra
,
A.
, and
Borello
,
D.
,
2020
, “
Comparative Life Cycle Assessment of Different Gas Turbine Axial Compressor Water Washing Systems
,”
Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. Volume 3: Ceramics; Coal, Biomass, Hydrogen, and Alternative Fuels
,
Virtual, Online
,
Sept. 21–25
.
6.
Agbadede
,
R.
,
Pilidis
,
P.
,
Igie
,
U. L.
, and
Allison
,
I.
,
2015
, “
Experimental and Theoretical Investigation of the Influence of Liquid Droplet Size on Effectiveness of Online Compressor Cleaning for Industrial Gas Turbines
,”
J. Energy Inst.
,
88
(
4
), pp.
414
424
.
7.
Wang
,
L.
,
Yan
,
Z.
,
Long
,
F.
,
Shi
,
X.
, and
Tang
,
J.
,
2016
, “
Parametric Study of Online Aero-Engine Washing Systems
,”
IEEE International Conference on Aircraft Utility Systems (AUS)
,
Beijing, China
,
Oct. 10–12
, pp.
273
277
.
8.
Baikov
,
I. R.
,
Suleimanov
,
A. M.
,
Kuznetsova
,
M. I.
,
Kitaev
,
S. V.
, and
Kolotilov
,
Y. V.
,
2018
, “
Improvement of the Composition of Detergent Solutions for the Removal of Deposits on the Axial-Compressor Blades of Gas-Turbine Units
,”
Polym. Sci. Ser. D
,
11
(
1
), pp.
82
85
. 0.1134/S1995421218010021
9.
Kloter
,
S.
,
Ashford
,
N. F.
, and
Fitchett
,
D. R.
,
2019
, “
Laboratory and On-Site Findings Demonstrating the Greater Effectiveness of Biphase Water-Based Compressor Cleaners Over Monophase Cleaners
,”
Proceedings of the ASME Turbo Expo 2019
,
Phoenix, AZ
,
June 17–21
.
10.
Igie
,
U.
,
Diez-Gonzalez
,
P.
,
Giraud
,
A.
, and
Minervino
,
O.
,
2016
, “
Evaluating Gas Turbine Performance Using Machine-Generated Data: Quantifying Degradation and Impacts of Compressor Washing
,”
ASME J. Eng. Gas Turbine Power
,
138
(
12
), p.
122601
.
11.
Wang
,
L.
,
Hu
,
J.
,
Huo
,
J.
,
Liu
,
Q.
,
Wei
,
B.
,
Tang
,
J.
, and
Shi
,
X.
,
2018
, “
Study on the Cleaning Mechanism of the Fouling of the Compressor Blade
,”
CSAA/IET International Conference on Aircraft Utility Systems (AUS 2018)
,
Guiyang, China
,
June 19–22
, pp.
1
5
.
12.
Musa
,
G.
,
Igie
,
U.
,
Pilidis
,
P.
, and
Gowon
,
S.
,
2017
, “
Economic Viability of On-Line Compressor Washing for Different Rated Capacity
,”
Proceedings of the ASME Turbo Expo 2017 Volume 3
,
Charlotte, NC
,
June 26–30
.
13.
Margolis
,
H.
,
1991
, “
US Navy On-Line Compressor Washing of Marine Gas Turbine Engines
,”
Proceedings of the International Gas Turbine and Aeroengine Congress and Exposition.
,
Orlando, FL
,
June 3–6
.
14.
Oosting
,
J.
,
Boonstra
,
K.
,
De Haan
,
A.
,
Van Der Vecht
,
D.
,
Stalder
,
J. P.
, and
Eicher
,
U.
,
2007
, “
Online Compressor Washing on Large Frame 9-FA Gas Turbines Erosion on RO Compressor Blade Leading Edge Field Performance With a Novel on Line Wash System
,”
Proceedings of the ASME Turbo Expo 2007
,
Montreal, Canada
,
May 14–17
, pp.
775
784
.
15.
Andreoli
,
M.
,
Gabriele
,
S.
,
Venturini
,
P.
, and
Borello
,
D.
,
2019
, “
New Model to Predict Water Droplets Erosion Based on Erosion Test Curves. Application to On-Line Water Washing of a Compressor
,”
Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. Volume 2D: Turbomachinery
,
Phoenix, AZ
,
June 17–21
.
16.
Kirols
,
H. S.
,
2015
, “
Water Droplet Erosion: Influencing Parameters, Representation, and Comparisons
,”
Master’s thesis
,
Concordia University
,
Montreal, Canada
.
17.
Seleznev
,
L. I.
,
Ryzhenkov
,
V. A.
, and
Mednikov
,
A. F.
,
2010
, “
Phenomenology of Erosion Wear of Constructional Steels and Alloys by Liquid Particles
,”
Therm. Eng.
,
57
(
9
), pp.
741
745
.
18.
Venturini
,
P.
,
Andreoli
,
M.
,
Borello
,
D.
,
Gabriele
,
S.
, and
Rispoli
,
F.
,
2019
, “
Modelling of Water Droplets Erosion on a Subsonic Compressor Cascade
,”
Flow Turbul. Combust.
,
103
(
4
), pp.
1109
1125
.
19.
Di Gruttola
,
F.
,
Agati
,
G.
,
Venturini
,
P.
,
Borello
,
D.
,
Rispoli
,
F.
,
Gabriele
,
S.
, and
Simone
,
D.
,
2020
, “
Numerical Study of Erosion Due to Online Water Washing in Axial Flow Compressors
,”
Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, Volume 2B: Turbomachinery
,
Virtual, Online
,
Sept. 21–25
.
20.
Agati
,
G.
,
Di Gruttola
,
F.
,
Gabriele
,
S.
,
Simone
,
D.
,
Venturini
,
P.
, and
Borello
,
D.
,
2020
, “
Water Washing of Axial Flow Compressors: Numerical Study on the Fate of Injected Droplets
,”
E3S Web of Conferences, 197, 75th National ATI Congress—#7 Clean Energy for all (ATI 2020).
,
Rome, Italy
,
Sept. 15–16
.
21.
Agati
,
G.
,
Di Gruttola
,
F.
,
Gabriele
,
S.
,
Simone
,
D.
,
Venturini
,
P.
, and
Borello
,
D.
,
2021
, “
Evaluation of Water Washing Efficiency and Erosion Risk in an Axial Compressor for Different Water Injection Conditions
,”
E3S Web of Conferences, 312, 76th Italian National Congress ATI (ATI 2021)
,
Rome, Italy
,
Sept. 15–17
.
22.
Bowen
,
C. P.
,
Libertowski
,
N. D.
,
Mortazavi
,
M.
, and
Bons
,
J. P.
,
2018
, “
Modeling Deposition in Turbine Cooling Passages With Temperature Dependent Adhesion and Mesh Morphing
,”
Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Volume 2D: Turbomachinery
,
Oslo, Norway
,
June 11–15
.
23.
Forsyth
,
P.
,
Gillespie
,
D.
, and
McGilvray
,
M.
,
2017
, “
Development and Applications of a Coupled Particle Deposition Dynamic Mesh Morphing Approach for the Numerical Simulation of Gas Turbine Flows
,”
Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. Volume 2D: Turbomachinery
,
Charlotte, NC
,
June 26–30
. Paper No. GT2017-63295.
24.
Cinelli
,
R.
,
Maggiani
,
G.
,
Gabriele
,
S.
,
Castorrini
,
A.
,
Agati
,
G.
, and
Rispoli
,
F.
,
2020
, “
Structural Analysis of a Gas Turbine Axial Compressor Blade Eroded by Online Water Washing
,”
Proceedings of ASME Turbo Expo 2020, Turbomachinery Technical Conference and Exposition
,
London, UK
,
Sept. 21–25
.
25.
Castorrini
,
A.
,
Venturini
,
P.
,
Corsini
,
A.
, and
Rispoli
,
F.
,
2019
, “
Numerical Simulation of the Blade Aging Process in an Induced Draft Fan Due to Long Time Exposition to Fly Ash Particles
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011025
.
26.
Castorrini
,
A.
,
Corsini
,
A.
,
Rispoli
,
F.
,
Venturini
,
P.
,
Takizawa
,
K.
, and
Tezduyar
,
T. E.
,
2019
, “
Computational Analysis of Performance Deterioration of a Wind Turbine Blade Strip Subjected to Environmental Erosion
,”
Comput. Mech.
,
1
(
21
), pp.
1133
1153
.
27.
Castorrini
,
A.
,
Corsini
,
A.
,
Morabito
,
F.
,
Rispoli
,
F.
, and
Venturini
,
P.
,
2017
, “
Numerical Simulation With Adaptive Boundary Method for Predicting Time Evolution of Erosion Processes
,”
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
.
28.
Castorrini
,
A.
,
Venturini
,
P.
,
Corsini
,
A.
,
Rispoli
,
F.
,
Takizawa
,
K.
, and
Tezduyar
,
T. E.
,
2020
, “
Computational Analysis of Particle-Laden-Airflow Erosion and Experimental Verification
,”
Comput. Mech.
,
65
, pp.
1549
1565
.
29.
ANSYS, Inc.
,
2020
,
ANSYS Fluent Theory Guide
, Release 2020 R2,
ANSYS, Inc.
,
Southpointe
.
30.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
. 0.1016/0045-7825(74)90029-2
31.
Yarin
,
A. L.
,
2006
, “
Drop Impact Dynamics: Splashing, Spreading, Receding, Bouncing
,”
Annu. Rev. Fluid Mech.
,
38
(
1
), pp.
159
192
.
32.
Josserand
,
C.
, and
Thoroddsen
,
S. T.
,
2016
, “
Drop Impact on a Solid Surface
,”
Annu. Rev. Fluid Mech.
,
48
(
1
), pp.
365
391
.
33.
Stanton
,
D. W.
, and
Rutland
,
C. J.
,
1998
, “
Multi-Dimensional Modeling of Thin Liquid Films and Spray-Wall Interactions Resulting From Impinging Sprays
,”
Int. J. Heat Mass Transfer
,
41
(
20
), pp.
3037
3054
.
34.
O’Rourke
,
P. J.
, and
Amsden
,
A. A.
,
2000
, “
A Spray/Wall Interaction Submodel for the KIVA-3 Wall Film Model
,” SAE Technical Paper 2000-01-0271.
35.
Mundo
,
C.
,
Sommerfeld
,
M.
, and
Tropea
,
C.
,
1995
, “
Droplet-Wall Collisions: Experimental Studies of the Deformation and Breakup Process
,”
Int. J. Multiphase Flow
,
21
(
2
), pp.
151
173
.
36.
Yarin
,
A. L.
, and
Weiss
,
D. A.
,
1995
, “
Impact of Drops on Solid Surfaces: Self-Similar Capillary Waves, and Splashing as a New Type of Kinematic Discontinuity
,”
J. Fluid Mech.
,
283
, pp.
141
173
.
37.
Lee
,
B. E.
,
Riu
,
K. J.
,
Shin
,
S. H.
, and
Kwon
,
S. B.
,
2003
, “
Development of a Water Droplet Erosion Model for Large Steam Turbine Blades
,”
KSME Int. J.
,
17
(
1
), pp.
114
121
.
38.
Ahmad
,
M.
,
Casey
,
M.
, and
Sürken
,
N.
,
2009
, “
Experimental Assessment of Droplet Impact Erosion Resistance of Steam Turbine Blade Materials
,”
Wear
,
267
(
9–10
), pp.
1605
1618
. 0.1016/j.wear.2009.06.012
39.
Agati
,
G.
,
Borello
,
D.
,
Di Gruttola
,
F.
,
Venturini
,
P.
,
Rispoli
,
F.
,
Serena
,
G.
, and
Simone
,
D.
,
2021
, “
Numerical Study of Droplet Erosion in the First-Stage Rotor of an Axial Flow Compressor
,”
Proceedings of the ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. Volume 2B: Turbomachinery–Axial Flow Turbine Aerodynamics; Deposition, Erosion, Fouling, and Icing
,
Virtual, Online
,
June 7–11
.
You do not currently have access to this content.