Abstract

Stereo particle image velocimetry (SPIV) measurements in a series of axial planes investigate the impact of operating conditions and semicircular axial casing grooves (ACGs) on the evolution of flow structure across multiple blade rows in an axial compressor. The field of view extends radially from the hub to the tip and circumferentially over entire blade passages. Previous studies in this machine have shown that the ACGs improve the stall margin significantly but reduce the peak efficiency. At pre-stall flowrate and without ACGs, intermittent reverse axial flow near the casing is induced by backflow vortices, tip leakage vortex (TLV), and the leakage flow extend upstream of the rotor leading edge. Inside the rotor, the tip region blockage, characterized by low axial and high circumferential momentum, expands radially inward as the flow evolves axially. This extreme non-uniformity diminishes rapidly within the stator. In addition to previously shown ACGs effects, the current data reveal that the flow jetting out from the groove upstream of the rotor generates axially aligned vortices on both sides of each jet. These vortices substantially reduce the flow non-uniformity over the entire passage by entraining the faster mid-span flow into the tip region. Near the best efficiency point, the jets become weaker, the blockage is confined to the tip region, and differences between the global flow structure with and without ACGs become subtle. However, interactions of the TLV with secondary flows entrained from the grooves into the passage expand the TLV signature, which has adverse effects on the compressor performance.

References

1.
Camp
,
T. R.
, and
Day
,
I. J.
,
1997
, “
A Study of Spike and Modal Stall Phenomena in a Low-Speed Axial Compressor
,”
Proceedings of the ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition. Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
,
ASME
,
Orlando, FL
,
June 2–5
. p.
V001T03A109
.
2.
Day
,
I. J.
,
1993
, “
Stall Inception in Axial Flow Compressors
,”
ASME J. Turbomach.
,
115
(
1
), pp.
1
9
.
3.
Smith
,
G. D. J.
, and
Cumpsty
,
N. A.
,
1984
, “
Flow Phenomena in Compressor Casing Treatment
,”
ASME J. Eng. Gas Turbines Power.
,
106
(
3
), pp.
532
541
.
4.
März
,
J.
,
Hah
,
C.
, and
Neise
,
W.
,
2002
, “
An Experimental and Numerical Investigation Into the Mechanisms of Rotating Instability
,”
ASME J. Turbomach.
,
124
(
3
), pp.
367
374
.
5.
Inoue
,
M.
,
Kuroumaru
,
M.
,
Yoshida
,
S.
,
Minami
,
T.
,
Yamada
,
K.
, and
Furukawa
,
M.
,
2004
, “
Effect of Tip Clearance on Stall Evolution Process in a Low-Speed Axial Compressor Stage
,”
Proceedings of the ASME Turbo Expo 2004: Power for Land, Sea, and Air. Volume 5: Turbo Expo 2004, Parts A and B
,
ASME
,
Vienna, Austria
,
June 14–17
, pp.
385
394
.
6.
Hoying
,
D. A.
,
Tan
,
C. S.
,
Vo
,
H. D.
, and
Greitzer
,
E. M.
,
1999
, “
Role of Blade Passage Flow Structures in Axial Compressor Rotating Stall Inception
,”
ASME J. Turbomach.
,
121
(
4
), pp.
735
742
.
7.
Vo
,
H. D.
,
Tan
,
C. S.
, and
Greitzer
,
E. M.
,
2008
, “
Criteria for Spike Initiated Rotating Stall
,”
ASME J. Turbomach.
,
130
(
1
), p.
011023
.
8.
Pullan
,
G.
,
Young
,
A. M.
,
Day
,
I. J.
,
Greitzer
,
E. M.
, and
Spakovszky
,
Z. S.
,
2015
, “
Origins and Structure of Spike-Type Rotating Stall
,”
ASME J. Turbomach.
,
137
(
5
), p.
051007
.
9.
Hewkin-Smith
,
M.
,
Pullan
,
G.
,
Grimshaw
,
S. D.
,
Greitzer
,
E. M.
, and
Spakovszky
,
Z. S.
,
2019
, “
The Role of Tip Leakage Flow in Spike-Type Rotating Stall Inception
,”
ASME J. Turbomach.
,
141
(
6
), p.
061010
.
10.
Eck
,
M.
,
Rückert
,
R.
,
Peitsch
,
D.
, and
Lehmann
,
M.
,
2020
, “
Prestall Instability in Axial Flow Compressors
,”
ASME J. Turbomach.
,
142
(
7
), p.
071009
.
11.
Chen
,
H.
,
Li
,
Y.
,
Tan
,
D.
, and
Katz
,
J.
,
2017
, “
Visualizations of Flow Structures in the Rotor Passage of an Axial Compressor at the Onset of Stall
,”
ASME J. Turbomach.
,
139
(
4
), p.
041008
.
12.
Cameron
,
J. D.
,
Bennington
,
M. A.
,
Ross
,
M. H.
,
Morris
,
S. C.
,
Du
,
J.
,
Lin
,
F.
, and
Chen
,
J.
,
2013
, “
The Influence of Tip Clearance Momentum Flux on Stall Inception in a High-Speed Axial Compressor
,”
ASME J. Turbomach.
,
135
(
5
), p.
051005
.
13.
Prince
,
D. C.
, Jr.
,
Wisler
,
D. A.
, and
Hilvers
,
D. E.
,
1974
, “
Study of Casing Treatment Stall Margin Improvement Phenomena
,” NASA CR-134552.
14.
Takata
,
H.
, and
Tsukuda
,
Y.
,
1975
, “
Study on the Mechanism of Stall Margin Improvement of Casing Treatment
,”
ASME Gas Turbine Conference
, ASME Paper No. 75-GT-13.
15.
Shabbir
,
A.
, and
Adamczyk
,
J. J.
,
2004
, “
Flow Mechanism for Stall Margin Improvement due to Circumferential Casing Grooves on Axial Compressors
,”
ASME J. Turbomach.
,
127
(
4
), pp.
708
717
.
16.
Houghton
,
T.
, and
Day
,
I.
,
2010
, “
Enhancing the Stability of Subsonic Compressors Using Casing Grooves
,”
ASME J. Turbomach.
,
133
(
2
), p.
021007
.
17.
Chen
,
H.
,
Huang
,
X.
,
Shi
,
K.
,
Fu
,
S.
,
Ross
,
M.
,
Bennington
,
M. A.
,
Cameron
,
J. D.
,
Morris
,
S. C.
,
McNulty
,
S.
, and
Wadia
,
A.
,
2013
, “
A Computational Fluid Dynamics Study of Circumferential Groove Casing Treatment in a Transonic Axial Compressor
,”
ASME J. Turbomach.
,
136
(
3
), p.
031003
.
18.
Houghton
,
T.
, and
Day
,
I.
,
2011
, “
Stability Enhancement by Casing Grooves: The Importance of Stall Inception Mechanism and Solidity
,”
ASME J. Turbomach.
,
134
(
2
), p.
021003
.
19.
Gourdain
,
N.
, and
Leboeuf
,
F.
,
2009
, “
Unsteady Simulation of an Axial Compressor Stage With Casing and Blade Passive Treatments
,”
ASME J. Turbomach.
,
131
(
2
), p.
021013
.
20.
Müller
,
M. W.
,
Schiffer
,
H.
,
Voges
,
M.
, and
Hah
,
C.
,
2011
, “
Investigation of Passage Flow Features in a Transonic Compressor Rotor With Casing Treatments
,”
Proceedings of the ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. Volume 7: Turbomachinery, Parts A, B, and C
,
ASME
,
Vancouver, British Columbia, Canada
,
June 6–10
, pp.
65
75
.
21.
Chen
,
H.
,
Koley
,
S. S.
,
Li
,
Y.
, and
Katz
,
J.
,
2019
, “
Systematic Experimental Evaluations Aimed at Optimizing the Geometry of Axial Casing Groove in a Compressor
,”
Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. Volume 2A: Turbomachinery
,
ASME
,
Phoenix, AZ
,
June 17–21
. p.
V02AT39A021
.
22.
Evans
,
S.
,
Yi
,
J.
,
Nolan
,
S.
,
Joseph
,
L.
,
Ni
,
M.
, and
Kulkarni
,
S.
,
2021
, “
Modeling of Axial Compressor With Large Tip Clearances
,”
ASME J. Turbomach.
,
143
(
6
), p.
061007
.
23.
Gupta
,
A.
,
Khalid
,
S. A.
,
McNulty
,
G. S.
, and
Dailey
,
L.
,
2003
, “
Prediction of Low Speed Compressor Rotor Flowfields With Large Tip Clearances
,”
Proceedings of the ASME Turbo Expo 2003, Collocated with the 2003 International Joint Power Generation Conference. Volume 6: Turbo Expo 2003, Parts A and B
,
ASME
,
Atlanta, GA
,
June 16–19
. pp.
1135
1145
.
24.
Rolfes
,
M.
,
Lange
,
M.
,
Vogeler
,
K.
, and
Mailach
,
R.
,
2017
, “
Experimental and Numerical Investigation of a Circumferential Groove Casing Treatment in a Low-Speed Axial Research Compressor at Different Tip Clearances
,”
ASME J. Turbomach.
,
139
(
12
), p.
121009
.
25.
Hah
,
C.
,
2017
, “
Effects of Double-Leakage Tip Clearance Flow on the Performance of a Compressor Stage With a Large Rotor Tip Gap
,”
ASME J. Turbomach.
,
139
(
6
), p.
061006
.
26.
Lepicovsky
,
J.
,
2004
, “
Application of a Split-Fiber Probe to Velocity Measurement in the NASA Research Compressor
,”
Proceedings of the ASME Turbo Expo 2004: Power for Land, Sea, and Air. Volume 2: Turbo Expo 2004
,
ASME
,
Vienna, Austria
,
June 14–17
. pp.
765
775
.
27.
Brandstetter
,
C.
,
Wartzek
,
F.
,
Werner
,
J.
,
Schiffer
,
H.
, and
Heinichen
,
F.
,
2016
, “
Unsteady Measurements of Periodic Effects in a Transonic Compressor With Casing Treatments
,”
ASME J. Turbomach.
,
138
(
5
), p.
051007
.
28.
Brandstetter
,
C.
,
Jüngst
,
M.
, and
Schiffer
,
H.
,
2018
, “
Measurements of Radial Vortices, Spill Forward, and Vortex Breakdown in a Transonic Compressor
,”
ASME J. Turbomach.
,
140
(
6
), p.
061004
.
29.
Chen
,
H.
,
Li
,
Y.
,
Koley
,
S. S.
,
Doeller
,
N.
, and
Katz
,
J.
,
2017
, “
An Experimental Study of Stall Suppression and Associated Changes to the Flow Structures in the Tip Region of an Axial Low Speed Fan Rotor by Axial Casing Grooves
,”
ASME J. Turbomach.
,
139
(
12
), p.
121010
.
30.
Chen
,
H.
,
Li
,
Y.
, and
Katz
,
J.
,
2018
, “
On the Interactions of a Rotor Blade Tip Flow With Axial Casing Grooves in an Axial Compressor Near the Best Efficiency Point
,”
ASME J. Turbomach.
,
141
(
1
), p.
011008
.
31.
Wu
,
H.
,
Tan
,
D.
,
Miorini
,
R. L.
, and
Katz
,
J.
,
2011
, “
Three-Dimensional Flow Structures and Associated Turbulence in the Tip Region of a Waterjet Pump Rotor Blade
,”
Exp. Fluids
,
51
(
6
), pp.
1721
1737
.
32.
Miorini
,
R. L.
,
Wu
,
H.
, and
Katz
,
J.
,
2012
, “
The Internal Structure of the Tip Leakage Vortex Within the Rotor of an Axial Waterjet Pump
,”
ASME J. Turbomach.
,
134
(
3
), p.
031018
.
33.
Tan
,
D.
,
Li
,
Y.
,
Wilkes
,
I.
,
Miorini
,
R.
, and
Katz
,
J.
,
2015
, “
Visualization and Time Resolved PIV Measurements of the Flow in the Tip Region of a Subsonic Compressor Rotor
,”
ASME J. Turbomach.
,
137
(
4
), p.
041007
.
34.
Saraswat
,
A.
,
Koley
,
S. S.
, and
Katz
,
J.
,
2021
, “
Experimental Characterization of the Evolution of Global Flow Structure in the Passage of an Axial Compressor
,”
Proceedings of the ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. Volume 2A: Turbomachinery—Axial Flow Fan and Compressor Aerodynamics. Virtual, Online
,
ASME
,
June 7–11
. p.
V02AT31A045
.
35.
Wieneke
,
B.
,
2005
, “
Stereo-PIV Using Self-Calibration on Particle Images
,”
Exp. Fluids
,
39
(
2
), pp.
267
280
.
36.
Roth
,
G. I.
, and
Katz
,
J.
,
2001
, “
Five Techniques for Increasing the Speed and Accuracy of PIV Interrogation
,”
Meas. Sci. Technol.
,
12
(
3
), pp.
238
245
.
37.
Westerweel
,
J.
, and
Scarano
,
F.
,
2005
, “
Universal Outlier Detection for PIV Data
,”
Exp. Fluids
,
39
(
6
), pp.
1096
1100
.
38.
Adrian
,
R.J.
, and
Westerweel
,
J.
,
2011
,
Particle Image Velocimetry
,
Cambridge University Press
,
New York
.
39.
Li
,
Y.
,
Chen
,
H.
,
Tan
,
D.
, and
Katz
,
J.
,
2019
, “
On the Effects of Tip Clearance and Operating Condition on the Flow Structures Within an Axial Turbomachine Rotor Passage
,”
ASME J. Turbomach.
,
141
(
11
), p.
111002
.
40.
Koley
,
S. S.
,
Saraswat
,
A.
, and
Katz
,
J.
,
2023
, “
Evolution of Turbulence and Its Modification by Axial Casing Grooves in a Multi-Stage Axial Compressor
,”
ASME J. Turbomach.
,
145
(
3
), p.
031015
.
41.
Fujita
,
H.
, and
Takata
,
H.
,
1984
, “
A Study on Configurations of Casing Treatment for Axial Flow Compressors
,”
Bull. JSME
,
27
(
230
), pp.
1675
1681
.
42.
Koley
,
S. S.
,
Chen
,
H.
,
Saraswat
,
A.
, and
Katz
,
J.
,
2021
, “
Effect of Axial Casing Groove Geometry on Rotor-Groove Interactions in the Tip Region of a Compressor
,”
ASME J. Turbomach.
,
143
(
9
), p.
091010
.
You do not currently have access to this content.