In the proposed approach, an acoustic domain is split into two parts by an arbitrary artificial boundary. The surrounding medium around the vibrating surface is discretized with finite elements up to the artificial boundary. The constraint equation specified on the artificial boundary is formulated with the Helmholtz integral equation straightforwardly, in which the source surface coincides with the vibrating surface discretized with boundary elements. To ensure the uniqueness of the numerical solution, the composite Helmholtz integral equation proposed by Burton and Miller was adopted. Due to the avoidance of singularity problems inherent in the boundary element formulation, this method is very efficient and easy to implement in an isoparametric element environment. It should be noted that the present method also can be applied to thin-body problems by using quarter-point elements.

1.
Astley
R. J.
,
1983
, “
Wave Envelope and Infinite Element Schemes for Acoustical Radiation
,”
Int. J. Num. Methods Fluids
, Vol.
3
, pp.
507
526
.
2.
Astley
R. J.
, and
Eversman
W.
,
1983
, “
Finite Element Formulations for Acoustical Radiation
,”
J. Sound Vib.
, Vol.
88
, pp.
47
64
.
3.
Bernhard
R. J.
, and
Takeo
S.
,
1988
, “
A Finite Element Procedure for Design of Cavity Acoustical Treatments
,”
J. Acoust. Soc. Am.
, Vol.
83
, pp.
2224
2232
.
4.
Burton, A. J., and Miller, G. F., 1971, “The Application of Integral Equation Methods to the Numerical Solution of Some Exterior Boundary-Value Problems,” Proc. Roy. Soc. London, A232, pp. 201–210.
5.
Chen
L. H.
, and
Schweikert
D. G.
,
1963
, “
Sound Radiation from an Arbitrary Body
,”
J. Acoust. Soc. Am.
, Vol.
35
, pp.
1626
1632
.
6.
Chertock
G.
,
1964
, “
Sound Radiation from Vibrating Surfaces
,”
J. Acoust. Soc. Am.
, Vol.
36
, pp.
1305
1313
.
7.
Copley
L. G.
,
1967
, “
Integral Equation Method for Radiation from Vibrating Bodies
,”
J. Acoust. Soc. Am.
, Vol.
41
, pp.
807
816
.
8.
Givoli
D.
,
1991
, “
Nonreflecting Boundary Conditions
,”
J. Comput. Phys.
, Vol.
94
, pp.
1
29
.
9.
Givoli
D.
, and
Cohen
D.
,
1995
, “
Nonreflecting Boundary Conditions Based on Kirchhoff-Type Formulae
,”
J. Comput. Phys.
, Vol.
117
, pp.
102
113
.
10.
Givoli
D.
,
Patlashenko
I.
, and
Keller
J. B.
,
1997
, “
High-Order Boundary Conditions and Finite Elements for Infinite Domains
,”
Comput. Meth. App. Mech. Eng.
, Vol.
143
, pp.
13
39
.
11.
Gladwell
G. M. L.
, and
Zimmermann
G.
,
1966
, “
On Energy and Complementary Energy Formulations of the Acoustic and Structure Vibration Problems
,”
J. Sound Vib.
, Vol.
3
, pp.
233
241
.
12.
Henshell
D.
,
1975
, “
Crack Tip Finite Elements Are Unnecessary
,”
Int. J. Num. Methods Eng.
, Vol.
9
, pp.
495
507
.
13.
Ih
K. D.
, and
Lee
D. J.
,
1997
, “
Development of the Direct Boundary Element Method for Thin Bodies with General Boundary Conditions
,”
J. Sound Vib.
, Vol.
202
, pp.
361
373
.
14.
Joppa
P. D.
, and
Fyfe
I. M.
,
1978
, “
A Finite Element Analysis of the Impedance Properties of Irregular Shaped Cavities with Absorptive Boundaries
,”
J. Sound Vib.
, Vol.
56
, pp.
61
69
.
15.
Kagawa
Y.
,
Yamabuchi
T.
, and
Mori
A.
,
1977
, “
Finite Element Simulation of an Axisymmetric Acoustic Transmission System with a Sound Absorbing Wall
,”
J. Sound Vib.
, Vol.
53
, pp.
357
374
.
16.
Krishnasamy
G.
,
Rizzo
F. J.
, and
Liu
Y.
,
1994
, “
Boundary Integral Equations for Thin Bodies
,”
Int. J. Num. Methods Eng.
, Vol.
37
, pp.
107
121
.
17.
Leitner
A.
,
1949
, “
Diffraction of Sound by a Circular Disk
,”
J. Acoust. Soc. Am.
, Vol.
21
, pp.
331
334
.
18.
Lenoir
M.
, and
Jami
A.
,
1978
, “
A Variational Formulation for Exterior Problems in Linear Hydrodynamics
,”
Comp. Meth. App. Mech. Eng.
, Vol.
16
, pp.
341
359
.
19.
Li
H. B.
,
Han
G. M.
,
Mang
H. A.
, and
Torzicky
P.
,
1986
, “
A New Method for the Coupling of Finite Element and Boundary Element Discretized Subdomains of Elastic Bodies
,”
Comp. Meth. App. Mech. Eng.
, Vol.
54
, pp.
161
185
.
20.
Liu
Y.
, and
Rizzo
F. J.
,
1992
, “
A Weakly Singular Form of the Hypersingular Boundary Integral Equation Applied to 3-D Acoustic Wave Problems
,”
Comp. Meth. App. Mech. Eng.
, Vol.
96
, pp.
271
287
.
21.
Martinez
R.
,
1991
, “
The Thin-Shape Breakdown (TSB) of the Helmholtz Integral Equation
,”
J. Acoust. Soc. Am.
, Vol.
90
, pp.
2728
2738
.
22.
Melvyn
S. M.
,
1965
, “
A Finite Element Method Applied to the Vibration of Submerged Structures
,”
J. Ship Res.
, Vol.
9
, pp.
11
22
.
23.
Meyer
W. L.
,
Bell
W. A.
,
Zinn
B. T.
, and
Stallybrass
M. P.
,
1978
, “
Boundary Integral Solutions of Three Dimensional Acoustic Radiation Problems
,”
J. Sound Vib.
, Vol.
59
, pp.
245
262
.
24.
Norton, M. P., 1989, Fundamentals of Noise and Vibration Analysis for Engineers, Cambridge University Press, Cambridge.
25.
Petyt
M.
, and
Lim
S. P.
,
1978
, “
Finite Element Analysis of the Noise Inside a Mechanically Excited Cylinder
,”
Int. J. Num. Methods Eng.
, Vol.
13
, pp.
109
122
.
26.
Schenck
H. A.
,
1968
, “
Improved Integral Formulation for Acoustic Radiation Problems
,”
J. Acoust. Soc. Am.
, Vol.
44
, pp.
41
58
.
27.
Seybert
A. F.
,
Soenarko
B.
,
Rizzo
F. J.
, and
Shippy
D. J.
,
1985
An Advanced Computational Method for Radiation and Scattering of Acoustic Waves in Three Dimensions
,”
J. Acoust. Soc. Am.
, Vol.
77
, pp.
362
368
.
28.
Seybert
A. F.
,
Soenarko
B.
,
Rizzo
F. J.
, and
Shippy
D. J.
,
1986
, “
A Special Integral Equation Formulation for Acoustic Radiation and Scattering for Axisymmetric Bodies and Boundary Conditions
,”
J. Acoust. Soc. Am.
, Vol.
80
, pp.
1241
1247
.
29.
Spence
R. D.
, and
Granger
S.
,
1951
, “
The Scattering of Sound from a Prolate Spheroid
,”
J. Acoust. Soc. Am.
, Vol.
23
, pp.
701
706
.
30.
Terai
T.
,
1980
, “
On Calculation of Sound Field around Three Dimensional Objects by Integral Equation Methods
,”
J. Sound Vib.
, Vol.
69
, pp.
71
100
.
31.
Ting
L.
, and
Miksis
M. J.
,
1986
, “
Exact Boundary Conditions for Scattering Problems
,”
J. Acoust. Soc. Am.
, Vol.
80
, pp.
1825
1827
.
32.
Wu
T. W.
,
1995
, “
A Direct Boundary Element Method for Acoustic Radiation and Scattering from Mixed Regular and Thin Bodies
,”
J. Acoust. Soc. Am.
, Vol.
97
, pp.
84
91
.
33.
Wu
T. W.
, and
Wan
G. C.
,
1992
, “
Numerical Modeling of Acoustic Radiation and Scattering from Thin Bodies Using a Cauchy Principle Integral Equation
,”
J. Acoust. Soc. Am.
, Vol.
92
, pp.
2900
2906
.
This content is only available via PDF.
You do not currently have access to this content.