The dynamic equations of the Jeffcott rotor with imbalance are concerned. The reliability of rotor systems with rubbing is examined. A statistical fourth moment method is developed to determine the first four moments of the system response and the state function. The distribution function of the system state function is approximately determined by using the Edgeworth series technique. Its reliability is obtained. The effect on the reliability of the shaft stiffness, the external damping coefficient, the degree of imbalance and the stator stiffness is studied. Numerical results are also presented and discussed.

1.
Lin, Y. K., 1967, Probabilistic Theory of Structural Dynamics, McGraw-Hill, New York.
2.
Yang
,
J.-N.
, and
Shinozuka
,
M.
,
1970
, “
First Passage Time Problem
,”
J. Acoust. Soc. Am.
,
47
, pp.
393
394
.
3.
Yang
,
J.-N.
, and
Shinozuka
,
M.
,
1971
, “
On the First Excursion Probability in Stationary Narrow-Band Random Vibration I
,”
ASME J. Appl. Mech.
,
38
, pp.
1017
1022
.
4.
Yang
,
J. N.
, and
Shinozuka
,
M.
,
1972
, “
On the First Excursion Probability in Stationary Narrow-Band Random Vibration II
,”
ASME J. Appl. Mech.
,
39
, pp.
733
738
.
5.
Crandall
,
S. H.
,
1970
, “
First Crossing Probabilities of the Linear Oscillator
,”
J. Sound Vib.
,
12
, pp.
285
299
.
6.
Crandall
,
S. H.
,
Chandiramani
,
K. L.
, and
Cook
,
R. G.
,
1966
, “
Some First-Passage Problems in Random Vibration
,”
ASME J. Appl. Mech.
,
33
, pp.
532
538
.
7.
Roberts
,
J. B.
,
1976
, “
First Passage Time for the Envelope of a Randomly Excited Linear Oscillator
,”
J. Sound Vib.
,
46
, pp.
1
14
.
8.
Bergman
,
L. A.
, and
Heinrich
,
J. C.
,
1982
, “
On the Reliability of Linear Oscillator and Systems of Coupled Oscillators
,”
Int. J. Numer. Methods Eng.
,
18
, pp.
1271
1295
.
9.
Field
,
R. V.
, and
Bergman
,
L. A.
,
1998
, “
Reliability-based Approach to Linear Covariance Control Design
,”
J. Eng. Mech.
,
124
, No.
2
, pp.
193
199
.
10.
Spencer
, Jr.,
B. F.
, and
Elishakoff
,
I.
,
1988
, “
Reliability of Uncertain Linear and Nonlinear Systems
,”
J. Eng. Mech.
,
114
, No.
1
, pp.
135
148
.
11.
Zhang
,
Y. M.
,
Wen
,
B. C.
, and
Liu
,
Q. L.
,
1998
, “
First Passage of Uncertain Single Degree-of-Freedom Nonlinear Oscillators
,”
Comput. Methods Appl. Mech. Eng.
,
165
, No.
4
, pp.
223
231
.
12.
Muszynska
,
A.
,
1989
, “
Rotor-to-Stationary Element Rubbing-Related Vibration Phenomena in Rotating Machinery-Literature Survey
,”
Shock Vib. Dig.
,
21
, No.
3
, pp.
3
11
.
13.
Beatty
,
R. F.
,
1985
, “
Differentiating Rotor Response due to Radial Rubbing
,”
ASME J. Vibr. Acoust., Stress and Reliability in Design
,
107
, pp.
151
160
.
14.
Childs
,
D. W.
,
1979
, “
Rubbing Induced Parametric Excitation in Rotors
,”
ASME J. Mech. Des.
,
101
, No.
4
, pp.
640
644
.
15.
Childs
,
D. W.
,
1982
, “
Fractional Frequency Rotor Motion due to Nonsymmetric Clearance Effects
,”
ASME J. Eng. Power
,
104
, pp.
533
541
.
16.
Isaksson, J. L., 1994, “Dynamics of a Rotor with Annular Rubbing,” Proceedings of IFTOMM 4th International Conference on Rotor Dynamics, Chicago, pp. 85–90.
17.
Vetter
,
W. J.
,
1973
, “
Matrix Calculus Operations and Taylor Expansions
,”
SIAM Rev.
,
15
, pp.
352
369
.
18.
Brewer
,
J. W.
,
1978
, “
Kronecker Products and Matrix Calculus in System Theory
,”
IEEE Trans. Circuits Syst.
,
CAS-25
, pp.
772
781
.
19.
Cramer, H., 1964, Mathematical Methods of Statistics, Princeton University Press, New Jersey.
You do not currently have access to this content.