Studies on coupled structural acoustic problems within laminated composite enclosures are presented. Isoparametric quadratic boundary element formulation for the acoustic domain is coupled to the structural properties of the enclosure through mobility relations obtained from free vibration finite element analysis of the dry enclosure visualized as a folded plate with first order transverse shear deformation and rotary inertia. Velocity amplitudes and forcing frequency is specified over certain parts of the boundary. The rest is interactive boundary. Absorbent layers at the boundary are accommodated through admittance relation. Results show that impact of absorbent layers is frequency dependent while modifying structural damping has a better prospect.

1.
Nefske
,
D. J.
,
Wolf
,
J. A.
, Jr.
, and
Howell
,
L. J.
, 1982, “
Structural-Acoustic Finite Element Analysis of the Automobile Passenger Compartment: A Review of Current Practice
,”
J. Sound Vib.
0022-460X,
80
(
2
), pp.
247
266
.
2.
Sung
,
S. H.
, and
Nefske
,
D. J.
, 1984, “
A Coupled Structural-Acoustic Finite Element Model for Vehicle Interior Noise Analysis
,”
ASME J. Vibr. Acoust.
0739-3717,
106
, pp.
314
318
.
3.
Sung
,
S. H.
, and
Nefske
,
D. J.
, 1986, “
Component Mode Synthesis of a Vehicle Structural-Acoustic System Model
,”
AIAA J.
0001-1452,
24
(
6
), pp.
1021
1026
.
4.
Suzuki
,
S.
,
Maruyama
,
S.
, and
Ido
,
H.
, 1989, “
Boundary Element Analysis of Cavity Noise Problems With Complicated Boundary Conditions
,”
J. Sound Vib.
0022-460X,
130
(
1
), pp.
79
91
.
5.
Sestieri
,
A.
,
Del Vescovo
,
D.
, and
Lucibello
,
P.
, 1984, “
Structural-Acoustic Coupling in Complex Shaped Cavities
,”
J. Sound Vib.
0022-460X,
96
(
2
), pp.
219
233
.
6.
Bathe
,
K. J.
, 1982,
Finite Element Procedures in Engineering Analysis
,
Prentice-Hall
,
Englewood Cliffs, NJ
, pp.
164
, 165, 344, 954-963.
7.
Bermudez
,
A.
,
Hervella-Nieto
,
L.
, and
Rodriguez
,
R.
, 1999, “
Finite Element Computation of Three-Dimensional Elastoacoustic Vibrations
,”
J. Sound Vib.
0022-460X,
219
(
2
), pp.
279
306
.
8.
Craggs
,
A.
, 1972, “
The Use of Simple Three-Dimensional Acoustic Finite Elements for Determining the Natural Modes and Frequencies of Complex Shaped Enclosures
,”
J. Sound Vib.
0022-460X,
23
, pp.
331
339
.
9.
Petyt
,
M.
, and
Lim
,
S. P.
, 1978, “
Finite Element Analysis of the Noise Inside a Mechanically Excited Cylinder
,”
Int. J. Numer. Methods Eng.
0029-5981,
13
, pp.
109
122
.
10.
Bell
,
W. A.
,
Meyer
,
W. L.
, and
Zinn
,
B. T.
, 1977, “
Predicting the Acoustics of Arbitrarily Shaped Bodies Using Integral Approach
,”
AIAA J.
0001-1452,
15
, pp.
813
820
.
11.
Seybert
,
A. F.
, and
Cheng
,
C. Y. R.
, 1987, “
Application of the Boundary Element Method to Acoustic Cavity Response and Muffler Analysis
,”
ASME J. Vibr. Acoust.
0739-3717,
109
, pp.
15
21
.
12.
Bokil
,
V. B.
, and
Shirahatti
,
U. S.
, 1994, “
A Technique for the Modal Analysis of Sound-Structure Interaction Problems
,”
J. Sound Vib.
0022-460X,
173
(
1
), pp.
23
41
.
13.
Wolf
,
J. A.
, 1977, “
Modal Synthesis for Combined Structural-Acoustic Systems
,”
AIAA J.
0001-1452,
15
, pp.
743
745
.
14.
Chen
,
L. H.
, 1982, “
Acoustic Emissions from Submerged Structures
,”
Developments in Boundary Element Methods-2
,
P. K.
Banerjee
et al.
, eds.,
Applied Science
,
UK
, pp.
245
281
.
15.
Engblom
,
J. J.
, and
Nelson
,
R. B.
, 1975, “
Consistent Formulation of Sound Radiation From Arbitrary Structure
,”
ASME J. Appl. Mech.
0021-8936,
42
, pp.
295
300
.
16.
Everstine
,
G. C.
,
Henderson.
,
F. M.
,
Schroeder
,
E. A.
, and
Lipman
,
R. R.
, 1986, “
A General Low Frequency Acoustic Radiation Capability for NASTRAN
,”
14th NASTRAN Users’ Colloquium Proceedings
, NASA CP-2419, NASA,
Washington, D.C.
, pp.
293
310
.
17.
Everstine
,
G. C.
,
Henderson
,
F. M.
, and
Schuetz
,
L. S.
, 1987, “
Coupled NASTRAN/Boundary Element Formulation for Acoustic Scattering
,”
15th NASTRAN Users’ Colloquium Proceedings
, NASA CP-2481, NASA,
Washington, D.C.
, pp.
250
265
.
18.
Jeans
,
R. A.
, and
Mathews
,
I. C.
, 1990, “
Solution of Fluid-Structure Interaction Problems Using a Coupled Finite Element and Variational Boundary Element Technique
,”
J. Acoust. Soc. Am.
0001-4966,
88
(
5
), pp.
2459
2466
.
19.
Mathews
,
I. C.
, 1986, “
Numerical Techniques for Three-Dimensional Steady-State Fluid-Structure Interaction
,”
J. Acoust. Soc. Am.
0001-4966,
79
(
5
), pp.
1317
1325
.
20.
Seybert
,
A. F.
,
Wu
,
T. W.
, and
Li
,
W. L.
, 1990, “
Applications of the FEM and BEM in Structural Acoustics
,”
Boundary Elements BE XII, 2
,
Applications in Fluid Mechanics and Field Problems
,
M.
Tanaka
et al.
, eds.,
CMP-Springer-Verlag
,
Berlin
, pp.
171
182
.
21.
Seybert
,
A. F.
,
Wu.
,
T. W.
, and
Wu
,
X. F.
, 1988, “
Radiation and Scattering of Acoustic Waves From Elastic Solids and Shells Using the Boundary Element Method
,”
J. Acoust. Soc. Am.
0001-4966,
84
, pp.
1906
1912
.
22.
Morand
,
H. J.-P.
, and
Ohayon
,
R.
, 1995,
Fluid Structure Interaction—Applied Numerical Methods
,
Wiley
,
New York
.
23.
Ohayon
,
R.
, and
Soize
,
C.
, 1998,
Structural Acoustics and Vibration: Mechanical Models, Variational Formulations and Discretization
,
Academic
,
New York
.
24.
Pates
,
C. S.
, III
,
Shirahatti
,
U. S.
, and
Mei
,
C.
, 1995, “
Sound-Structure Interaction Analysis of Composite Panels Using Coupled Boundary and Finite Element Methods
,”
J. Acoust. Soc. Am.
0001-4966,
98
(
2
), pp.
1216
1221
.
25.
Guha Niyogi
,
A.
,
Laha
,
M. K.
, and
Sinha
,
P. K.
, 1999, “
Finite Element Vibration Analysis of Laminated Composite Folded Plate Structures
,”
Shock Vib.
1070-9622,
6
(
5–6
), pp.
273
283
.
26.
Guha Niyogi
,
A.
,
Laha
,
M. K.
, and
Sinha
,
P. K.
, 2000, “
A Coupled FE-BE Analysis of Acoustic Cavities Confined Inside Laminated Composite Enclosures
,”
Aircraft Eng. Aerospace Technol.
,
72
(
4
), pp.
345
357
.
27.
Guha Niyogi
,
A.
,
Laha
,
M. K.
, and
Sinha
,
P. K.
, 2003, “
Coupled Dynamic Response of Composite and Sandwich Enclosures Containing an Acoustic Cavity
,”
Adv. Vib. Eng.
,
2
(
2
), pp.
86
96
.
28.
Poh
,
S.
,
Baz
,
A.
, and
Balchandran
,
B.
, 1996, “
Experimental Adaptive Control of Sound Radiation From a Panel Into an Acoustic Cavity Using Active Constrained Layer Damping
,”
Smart Mater. Struct.
0964-1726,
5
(
5
), pp.
649
659
.
29.
Abramovich
,
H.
, and
Plenter
,
B.
, 1997, “
Actuation and Sensing of Piezolaminated Sandwich Type Structures
,”
Compos. Struct.
0263-8223,
38
(
1–4
), pp.
17
27
.
30.
Schenck
,
H. A.
, 1968, “
Improved Integral Formulation for Acoustic Radiation Problems
,”
J. Acoust. Soc. Am.
0001-4966,
44
,
41
58
.
31.
Burton
,
A. J.
, and
Miller
,
G. F.
, 1971, “
The Application of Integral Equation Methods to the Numerical Solution of Some Exterior Boundary-Value Problems
,”
Proc. R. Soc. London, Ser. A
1364-5021,
323
, pp.
201
210
.
32.
Utku
,
S.
, 1984, “
Analysis of Multi-Degree of Freedom Systems
,”
Dynamics of Offshore Structures
,
J. F.
Wilson
, ed.,
Wiley-Interscience
,
New York
, Chap. 9.
33.
Beer
,
G.
, and
Watson
,
J. O.
, 1992,
Introduction to Finite and Boundary Element Methods for Engineers
,
Wiley
,
Chichester, UK
, Chap. 8.
34.
Kinsler
,
L. E.
,
Frey
,
A. R.
,
Coppens
,
A. B.
, and
Sanders
,
J. V.
, 1982,
Fundamentals of Acoustics
, 3rd ed.,
Wiley
,
Chichester
, pp.
200
-
202
.
35.
Succi
,
G. P.
, 1987, “
The Interior Acoustic Field of an Automobile Cabin
,”
J. Acoust. Soc. Am.
0001-4966,
81
(
6
), pp.
1688
1694
.
You do not currently have access to this content.