In this study, nonlinear transverse vibrations of an Euler–Bernoulli beam with multiple supports are considered. The beam is supported with immovable ends. The immovable end conditions cause stretching of neutral axis and introduce cubic nonlinear terms to the equations of motion. Forcing and damping effects are included in the problem. The general arbitrary number of support case is considered at first, and then 3-, 4-, and 5-support cases are investigated. The method of multiple scales is directly applied to the partial differential equations. Natural frequencies and mode shapes for the linear problem are found. The correction terms are obtained from the last order of expansion. Nonlinear frequencies are calculated and then amplitude and phase modulation figures are presented for different forcing and damping cases. The 3:1 internal resonances are investigated. External excitation frequency is applied to the first mode and responses are calculated for the first or second mode. Frequency-response and force-response curves are drawn.

1.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
, 1979,
Nonlinear Oscillations
,
Wiley
, New York.
2.
Woinowsky-Krieger
,
S.
, 1950, “
The Effect of an Axial Force on the Vibration of Hinged Bars
,”
ASME J. Appl. Mech.
0021-8936,
17
, pp.
35
36
.
3.
Burgreen
,
D.
, 1951,
Free Vibration of Pin-Ended Column With Constant Distance Between Pin Ends
,”
ASME J. Appl. Mech.
0021-8936,
18
, pp.
135
139
.
4.
Ozkaya
,
E.
, and
Tekin
,
A.
, 2007,
Non Linear Vibrations of Stepped Beam System Under Different Boundary Conditions
,”
Struct. Eng. Mech.
1225-4568,
27
(
3
),
333
345
.
5.
Weidenhammer
,
F.
, 1981, “
Non-linear Vibrations With Almost Periodical Parameter Excitations
,”
Z. Angew. Math. Mech.
0044-2267,
61
(
12
), pp.
633
638
.
6.
Srinivasan
,
A. V.
, 1965, “
Large Amplitude-Free Oscillations of Beams and Plates
,”
AIAA J.
0001-1452,
3
, pp.
1951
1953
.
7.
Tseng
,
W. Y.
, and
Dugundji
,
J.
, 1971, “
Nonlinear Vibrations of a Buckled Beam Under Harmonic Excitation
,”
ASME J. Appl. Mech.
0021-8936,
38
, pp.
467
472
.
8.
Dowell
,
E. H.
, 1980, “
Component Mode Analysis of Nonlinear and Non Conservative Systems
,”
ASME J. Appl. Mech.
0021-8936,
47
, pp.
172
176
.
9.
Szemplinska-Stupnicka
,
W.
, 1971,
The Behaviour of Nonlinear Vibrating Systems II
,
Kluwer
, Dordrecht.
10.
Pakdemirli
,
M.
, and
Nayfeh
,
A. H.
, 1994, “
Nonlinear Vibration of Beam-Spring-Mass System
,”
ASME J. Vibr. Acoust.
0739-3717,
166
, pp.
433
438
.
11.
Lewandowski
,
R.
, 1989, “
Nonlinear Free Vibrations of Multispan Beams on Elastic Supports
,”
Comput. Struct.
0045-7949,
32
(
2
), pp.
305
312
.
12.
Özkaya
,
E.
, 1995, “
Nonlinear Vibrations of Beam Mass Systems Under Different End Conditions
,” MSc thesis, Celal Bayar University.
13.
Gürgöze
,
M.
, 1984, “
A Note on the Vibrations of Restrained Beams and Rods With Point Masses
,”
J. Sound Vib.
0022-460X,
96
, pp.
461
468
.
14.
Gürgöze
,
M.
, 1985, “
On the Vibrations of Restrained Beams and Rods With Heavy Masses
,”
J. Sound Vib.
0022-460X,
100
, pp.
588
589
.
15.
Gürgöze
,
M.
,
Özgür
,
K.
, and
Erol
,
H.
, 1995, “
On the Eigenfrequencies of a Cantilevered Beam With a Tip Mass and In-Span Support
,”
Comput. Struct.
0045-7949,
56
, pp.
85
92
.
16.
Gürgöze
,
M.
, 1998, “
On the Alternative Formulations of the Frequency Equation of a Bernoulli–Euler Beam to Which Several Spring-Mass Systems are Attached In-Span
,”
J. Sound Vib.
0022-460X,
217
, pp.
585
595
.
17.
Özkaya
,
E.
,
Pakdemirli
,
M.
, and
Öz
,
H. R.
, 1997, “
Nonlinear Vibrations of a Beam-Mass System Under Different Boundary Conditions
,”
J. Sound Vib.
0022-460X,
199
, pp.
679
696
.
18.
Karlı
,
B.
,
Özkaya
,
E.
,
Aydın
,
S.
, and
Pakdemirli
,
M.
, 1998, “
Vibrations of a Beam Mass System Using Artificial Neural Network
,”
Comput. Struct.
0045-7949,
69
, pp.
339
347
.
19.
Özkaya
,
E.
,
Aydın
,
S.
, and
Pakdemirli
,
M.
, 1999, “
Nonlinear Vibrations of Beam-Mass System With Both Ends Clamped
,”
J. Sound Vib.
0022-460X,
221
, pp.
491
503
.
20.
Sato
,
K.
,
Shikanai
,
G.
, and
Minamino
,
Y.
, 1986, “
Non-linear Vibrations of Beams With Attached Spring-Mass System
,”
Bull. JSME
0021-3764,
29
(
253
), pp.
2232
2238
.
21.
Öz
,
H. R.
, 2000, “
Calculation of the Natural Frequencies of a Beam-Mass System Using Finite Element Method
,”
Math. Comput. Appl.
,
5
, pp.
67
75
.
22.
Özkaya
,
E.
, 2001, “
Linear Transverse Vibrations of a Simply Supported Beam Carrying Concentrated Masses
,”
Math. Comput. Appl.
,
6
, pp.
147
151
.
23.
Gürgöze
,
M.
, and
Erol
,
H.
, 2001, “
Determination of the Frequency Response Function of a Cantilevered Beam Simply Supported In-Span
,”
J. Sound Vib.
0022-460X,
247
, pp.
372
378
.
24.
Gürgöze
,
M.
, and
Erol
,
H.
, 2002, “
On the Frequency Response Function of a Damped Cantilever Simple-Simple Supported In-Span and Carrying a Tip Mass
,”
J. Sound Vib.
0022-460X,
255
, pp.
489
500
.
25.
Pakdemirli
,
M.
, and
Boyacı
,
H.
, 2003, “
Nonlinear Vibrations of Simple Beam With a Non-Ideal Support in Between
,”
J. Sound Vib.
0022-460X,
268
, pp.
331
341
.
26.
Rehfield
,
L. W.
, 1974, “
Nonlinear flexural oscillation of shallow arches
,”
AIAA J.
0001-1452,
12
, pp.
91
93
.
27.
Öz
,
H. R.
,
Pakdemirli
,
M.
,
Özkaya
,
E.
, and
Yılmaz
,
M.
, 1998, “
Nonlinear Vibrations of a Slightly Curved Beam Resting on a Nonlinear Elastic Foundation
,”
J. Sound Vib.
0022-460X,
212
pp.
295
309
.
28.
Nayfeh
,
A. H.
, 1981,
Introduction to Perturbation Techniques
,
Wiley
, New York.
You do not currently have access to this content.