This paper is presented to improve the modeling accuracy and the computational stability for a high-speed rotating flexible structure. The differential governing equations are derived based on the first-order approximation coupling (FOAC) model theory in the framework of the generalized Hamiltonian principle. The semi-discrete model is obtained by the finite element method, and a new shape function based on FOAC is established for the piezoelectric layers. To increase the efficiency, accuracy, and stability of computation, first, the second-order half-implicit symplectic Runge–Kutta method is presented to keep the computational stability of the numerical simulation in a long period of time. Then, the idea of a precise integration method is introduced into the symplectic geometric algorithm. An improved symplectic precise integration method is developed to increase accuracy and efficiency. Several numerical examples are adopted to show the promise of the modeling and the computational method.

1.
Gosavi
,
S. V.
, and
Kelkar
,
A. G.
, 2004, “
Modelling, Identification, and Passivity-Based Robust Control of Piezo-Actuated Flexible Beam
,”
Trans. ASME, J. Vib. Acoust.
1048-9002,
126
(
2
), pp.
260
271
.
2.
Cai
,
G.-P.
,
Hong
,
J.-Z.
, and
Yang
,
S. X.
, 2005, “
Dynamic Analysis of a Flexible Hub-Beam System With Tip Mass
,”
Mech. Res. Commun.
0093-6413,
32
(
2
), pp.
173
190
.
3.
Fallahi
,
B.
, and
Lai
,
S. H. Y.
, 1994, “
An Improved Numerical Scheme for Characterizing Dynamic Behavior of High-Speed Rotating Elastic Beam Structures
,”
Comput. Struct.
0045-7949,
50
(
6
), pp.
749
755
.
4.
Ouyang
,
H.
, and
Wang
,
M.
, 2007, “
Dynamics of a Rotating Shaft Subject to a Three-Directional Moving Load
,”
Trans. ASME, J. Vib. Acoust.
1048-9002,
129
(
3
), pp.
386
389
.
5.
Eguchi
,
T.
, and
Nakamiya
,
T.
, 2006, “
An Improved Component-Mode Synthesis Method to Predict Vibration of Rotating Spindles and Its Application to Position Errors of Hard Disk Drives
,”
Trans. ASME, J. Vib. Acoust.
1048-9002,
128
(
5
), pp.
568
575
.
6.
Schiehlen
,
W.
,
Guse
,
N.
, and
Seifried
,
R.
, 2006, “
Multibody Dynamics in Computational Mechanics and Engineering Applications
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
(
41–43
), pp.
5509
5522
.
7.
Ibrahimbegovic
,
A.
,
Taylor
,
R. L.
, and
Lim
,
H.
, 2003, “
Non-Linear Dynamics of Flexible Multibody Systems
,”
Comput. Struct.
0045-7949,
81
(
12
), pp.
1113
1132
.
8.
Mukherjee
,
A.
, and
Chaudhuri
,
A. S.
, 2005, “
Nonlinear Dynamic Response of Piezolaminated Smart Beams
,”
Comput. Struct.
0045-7949,
83
(
15–16
), pp.
1298
1304
.
9.
Zhou
,
Y.-H.
, and
Wang
,
J.
, 2004, “
Vibration Control of Piezoelectric Beam-Type Plates With Geometrically Nonlinear Deformation
,”
Int. J. Non-Linear Mech.
0020-7462,
39
(
6
), pp.
909
920
.
10.
Shu-Qing
,
Y.
,
Qing-Yu
,
X.
, and
Ling
,
Z.
, 2000, “
Experiments on Active Vibration Control of a Flexible Four-Bar Linkage Mechanism
,”
Trans. ASME, J. Vib. Acoust.
1048-9002,
122
(
1
), pp.
82
85
.
11.
Huang
,
Y. A.
,
Deng
,
Z. C.
, and
Li
,
W. C.
, 2007, “
Sliding Mode Control Based on Neural Network for the Vibration Reduction of Flexible Structures
,”
Struct. Eng. Mech.
1225-4568,
26
(
4
), pp.
377
392
.
12.
Huang
,
Y. A.
,
Deng
,
Z. C.
, and
Xiong
,
Y. L.
, 2007, “
Dynamic Analysis of a Rotating Rigid-Flexible Coupled Smart Structure With Large Deformations
,”
Appl. Math. Mech.
0253-4827,
28
(
10
), pp.
1349
1360
.
13.
Chen
,
S.
, and
Tortorelli
,
D. A.
, 2003, “
An Energy-Conserving and Filtering Method for Stiff Nonlinear Multibody Dynamics
,”
Multibody Syst. Dyn.
1384-5640,
10
(
4
), pp.
341
362
.
14.
Zhang
,
S. Y.
, and
Deng
,
Z. C.
, 2006, “
Group Preserving Schemes for Nonlinear Dynamic System Based on RKMK Methods
,”
Appl. Math. Comput.
0096-3003,
175
(
1
), pp.
497
507
.
15.
Budd
,
C. J.
, and
Iserles
,
A.
, 1999, “
Geometric Integration: Numerical Solution of Differential Equations on Manifolds
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
357
(
1754
), pp.
945
956
.
16.
Gonzalez
,
O.
, and
Simo
,
J. C.
, 1996, “
On the Stability of Symplectic and Energy-Momentum Algorithms for Non-Linear Hamiltonian Systems With Symmetry
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
134
(
3–4
), pp.
197
222
.
17.
Feng
,
K.
, 1984, “
On Difference Schemes and Simplectic Geometry
,”
Proceedings of Symposium on Differential Geometry and Differential Equations
,
K.
Feng
, ed., pp.
42
58
.
18.
Feng
,
K.
, and
Qin
,
M.
, 1991, “
Hamiltonian Algorithms for Hamiltonian Systems and a Comparative Numerical Study
,”
Comput. Phys. Commun.
0010-4655,
65
(
1–3
), pp.
173
187
.
19.
Izaguirrea
,
J. s. A.
,
Reich
,
S.
, and
Skeel
,
R. D.
, 1999, “
Longer Time Steps for Molecular Dynamics
,”
J. Chem. Phys.
0021-9606,
110
(
20
), pp.
9853
9864
.
20.
Buss
,
S. R.
, 2000, “
Accurate and Efficient Simulation of Rigid-Body Rotations
,”
J. Comput. Phys.
0021-9991,
164
(
2
), pp.
377
406
.
21.
Huang
,
Y. A.
, and
Deng
,
Z. C.
, 2007, “
Dynamics Analysis of the Hub and Tapered Beam Coupled System With Tip Mass
,”
Chinese Journal of Computational Mechanics
,
24
(
1
), pp.
14
19
, in Chinese. Available at: http://jslxxb.dlut.edu.cnhttp://jslxxb.dlut.edu.cn
22.
Wasfy
,
T. M.
, and
Noor
,
A. K.
, 2003, “
Computational Strategies for Flexible Multibody Systems
,”
Appl. Mech. Rev.
0003-6900,
56
(
6
), pp.
553
613
.
23.
Kerdjoudj
,
M.
, and
Amirouche
,
F.
, 1996, “
Implementation of the Boundary Element Method in the Dynamics of Flexible Bodies
,”
Int. J. Numer. Methods Eng.
0029-5981,
39
(
2
), pp.
321
354
.
24.
Iura
,
M.
, and
Kanaizuka
,
J.
, 2001, “
Flexible Translational Joint Analysis by Meshless Method
,”
Int. J. Solids Struct.
0020-7683,
37
(
37
), pp.
5203
5217
.
25.
Bathe
,
K.-J.
,
Wilson
,
E. L.
, 1976,
Numerical Methods in Finite Element Analysis
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
26.
Ibrahimbegovic
,
A.
, 1995, “
On FE Implementation of Geometrically Nonlinear Reissner Beam Theory: Three-Dimensional Curved Beam Finite Elements
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
122
, pp.
10
26
.
27.
Huang
,
Y. A.
,
Deng
,
Z. C.
, and
Yao
,
L. X.
, 2007, “
An Improved Symplectic Precise Integration Method for Analysis of the Rotating Rigid-Flexible Coupled System
,”
J. Sound Vib.
0022-460X,
299
(
1–2
), pp.
229
246
.
28.
Ryu
,
J.
, and
Kim
,
S.-S.
, 1997, “
A Criterion on Inclusion of Stress Stiffening Effects in Flexible Multibody Dynamic System Simulation
,”
Comput. Struct.
0045-7949,
62
(
6
), pp.
1035
1048
.
29.
Wu
,
S. C.
, and
Haug
,
E. J.
, 1988, “
Geometric Non-Linear Substructuring for Dynamics of Flexible Mechanical Systems
,”
Int. J. Numer. Methods Eng.
0029-5981,
26
(
10
), pp.
2211
2226
.
30.
Tiersten
,
H. F.
, 1969,
Linear Piezoelectric Plate Vibrations
,
Plenum
,
New York
.
31.
Zhong
,
W. X.
, 2004, “
On Precise Integration Method
,”
J. Comput. Appl. Math.
0377-0427,
163
(
1
), pp.
59
78
.
32.
Wang
,
Q.
,
Huang
,
K.
, and
Lu
,
Q.
, 1997, “
Symplectic Algorithm for Hamilton Multibody System
,”
Chin. J. Comput. Phys.
1001-246X,
14
(
1
), pp.
35
39
.
33.
Feng
,
K.
, and
Qin
,
M.
, 2003,
Symplectic Geometric Algorithms for Hamiltonian Systems
,
Zhejiang Science and Technology
,
Zhejiang, Hangzhou
.
You do not currently have access to this content.