The parametric excitation of an axially moving plate is examined in an application where a partial foundation moves in the plane of the plate and in a direction orthogonal to the plate’s transport. The stability of the plate’s out-of-plane vibration is of interest in a magnetic tape data storage application where the read/write head is substantially narrower than the tape’s width and is repositioned during track-following maneuvers. In this case, the model’s equation of motion has time-dependent coefficients, and vibration is excited both parametrically and by direct forcing. The parametric instability of out-of-plane vibration is analyzed by using the Floquet theory for finite values of the foundation’s range of motion. For a relatively soft foundation, vibration is excited preferentially at the primary resonance of the plate’s fundamental torsional mode. As the foundation’s stiffness increases, multiple primary and combination resonances occur, and they dominate the plate’s stability; small islands, however, do exist within unstable zones of the frequency-amplitude parameter space for which vibration is marginally stable. The plate’s and foundation’s geometry, the foundation’s stiffness, and the excitation’s amplitude and frequency can be selected in order to reduce undesirable vibration that occurs along the plate’s free edge.

1.
Wickert
,
J. A.
, 1993, “
Free Linear Vibration of Self-Pressurized Foil Bearings
,”
ASME J. Vibr. Acoust.
0739-3717,
115
, pp.
145
151
.
2.
Müftü
,
S.
, and
Benson
,
R. C.
, 1996, “
A Study of Cross-Width Variations in the Two-Dimensional Foil Bearing Problem
,”
ASME J. Tribol.
0742-4787,
118
, pp.
407
414
.
3.
Bhat
,
R. B.
,
Xistris
,
G. D.
, and
Sankar
,
T. S.
, 1982, “
Dynamic Behavior of a Moving Belt Supported on Elastic Foundation
,”
ASME J. Mech. Des.
,
104
, pp.
143
147
. 0161-8458
4.
Perkins
,
N. C.
, 1990, “
Linear Dynamics of a Translating String on an Elastic Foundation
,”
ASME J. Vibr. Acoust.
0739-3717,
112
, pp.
2
7
.
5.
Parker
,
R. G.
, 1999, “
Supercritical Speed Stability of the Trivial Equilibrium of an Axially-Moving String on an Elastic Foundation
,”
J. Sound Vib.
0022-460X,
221
(
2
), pp.
205
219
.
6.
Wickert
,
J. A.
, 1994, “
Response Solutions for the Vibration of a Traveling String on an Elastic Foundation
,”
ASME J. Vibr. Acoust.
0739-3717,
119
, pp.
137
139
.
7.
Müftü
,
S.
, and
Benson
,
R. C.
, 1994, “
A Numerical Solution for the Transient Displacement of a Circumferentially Moving Cylindrical Shell
,”
ASME J. Vibr. Acoust.
0739-3717,
116
(
4
), pp.
567
572
.
8.
Leissa
,
A. W.
, 1969,
Vibration of Plates
,
National Aeronautics and Space Administration
,
Washington
.
9.
Simpson
,
A.
, 1973, “
Transverse Modes and Frequencies of Beams Translating Between Fixed End Supports
,”
J. Mech. Eng. Sci.
,
15
, pp.
159
164
. 0022-2542
10.
Ulsoy
,
A. G.
, and
Mote
,
C. D.
, Jr.
, 1982, “
Vibration of Wide Band Saw Blades
,”
ASME J. Eng. Ind.
0022-0817,
104
, pp.
71
78
.
11.
Lin
,
C. C.
, 1997, “
Stability and Vibration Characteristics of Axially Moving Plates
,”
Int. J. Solids Struct.
0020-7683,
34
(
24
), pp.
3179
3190
.
12.
Hsu
,
C. S.
, and
Cheng
,
W.-H.
, 1974, “
Steady-State Response of a Dynamical System Under Combined Parametric and Forcing Excitations
,”
ASME J. Appl. Mech.
,
41
(
2
), pp.
371
378
. 0021-8936
13.
Mockensturm
,
E. M.
,
Perkins
,
N. C.
, and
Ulsoy
,
A. G.
, 1996, “
Stability and Limit Cycles of Parametrically Excited, Axially Moving Strings
,”
ASME J. Vibr. Acoust.
0739-3717,
118
(
3
), pp.
346
351
.
14.
Parker
,
R. G.
, and
Lin
,
Y.
, 2001, “
Parametric Instability of Axially Moving Media Subjected to Multifrequency Tension and Speed Fluctuations
,”
ASME J. Appl. Mech.
0021-8936,
68
(
1
), pp.
49
57
.
15.
Kim
,
C. H.
,
Lee
,
C. W.
, and
Perkins
,
N. C.
, 2005, “
Nonlinear Vibration of Sheet Metal Plates Under Interacting Parametric and External Excitation During Manufacturing
,”
ASME J. Vibr. Acoust.
0739-3717,
127
(
1
), pp.
36
43
.
16.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
, 1979,
Nonlinear Oscillations
,
Wiley
,
New York
.
17.
Wu
,
W.-T.
,
Griffin
,
J. H.
, and
Wickert
,
J. A.
, 1995, “
Perturbation Method for the Floquet Eigenvalues and Stability Boundary of Periodic Linear Systems
,”
J. Sound Vib.
0022-460X,
182
(
2
), pp.
245
257
.
18.
Pernot
,
S.
, and
Lamarque
,
C.-H.
, 2001, “
A Wavelet-Galerkin Procedure to Investigate Time-Periodic Systems: Transient Vibration and Stability Analysis
,”
J. Sound Vib.
,
245
(
5
), pp.
845
875
. 0022-460X
19.
Lee
,
K.-Y.
, and
Renshaw
,
A. A.
, 2002, “
Stability Analysis of Parametrically Excited Systems Using Spectral Collocation
,”
J. Sound Vib.
,
258
(
4
), pp.
725
739
. 0022-460X
20.
Bauchau
,
O. A.
, and
Nikishkov
,
Y. G.
, 2001, “
An Implicit Transition Matrix Approach to Stability Analysis of Flexible Multi-Body Systems
,”
Multibody Syst. Dyn.
1384-5640,
5
, pp.
279
301
.
21.
Zen
,
G.
, and
Müftü
,
S.
, 2006, “
Stability of an Axially Accelerating String Subjected to Frictional Guiding Forces
,”
J. Sound Vib.
0022-460X,
289
, pp.
551
576
.
You do not currently have access to this content.