The onset of self-excited oscillations is developed theoretically for a traveling wave thermo-acoustic-piezoelectric (TAP) energy harvester. The harvester is intended for converting thermal energy, such as solar or waste heat energy, directly into electrical energy without the need for any moving components. The thermal energy is utilized to generate a steep temperature gradient along a porous regenerator. At a specific threshold of the temperature gradient, self-sustained acoustic waves are generated inside an acoustic resonator. The resulting pressure fluctuations excite a piezoelectric diaphragm, placed at the end of the resonator, which converts the acoustic energy directly into electrical energy. The pressure pulsations are amplified by using an acoustic feedback loop which introduces appropriate phasing that make the pulsations take the form of traveling waves. Such traveling waves render the engine to be inherently reversible and thus highly efficient. The behavior of this class of harvesters is modeled using the lumped-parameter approach. The developed model is a multifield model which combines the descriptions of the acoustic resonator, feedback loop, and the regenerator with the characteristics of the piezoelectric diaphragm. A new method is proposed here to analyze the onset of self-sustained oscillations of the traveling wave engine using the classical control theory. The predictions of the developed models are validated against published results. Such models present invaluable tools for the design of efficient TAP energy harvesters and engines.

References

1.
Swift
,
G.
, 2002,
Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators
,
Acoustical Society of America
,
AIP
,
New York
.
2.
Swift
,
G.
, 1988, “
Thermoacoustic Engines
,”
J. Acoust. Soc. Am.
,
84
(
4
), pp.
1145
1180
.
3.
Backhaus
,
S.
, and
Swift
,
G.
, 2000, “
A Thermoacoustic-Stirling Heat Engine: Detailed Study
,”
J. Acoust. Soc. Am.
,
107
(
6
), pp.
3148
3166
.
4.
Backhaus
,
S.
, and
Swift
,
G.
, 1999, “
A Thermoacoustic-Stirling Heat Engine
,”
Nature
,
399
, pp.
335
338
.
5.
Hartley
,
R.
, 1951,“
Electric Power Source
,” U.S. Patent No. 2,549,
464
.
6.
Marrison
,
W.
, 1958, “
Heat-Controlled Acoustic Wave System
,” U.S. Patent No. 2,836,
033
.
7.
Ceperley
,
P. H.
, 1979, “
A Pistonless Stirling Engine—The Traveling Wave Heat Engine
,”
J. Acoust. Soc. Am.
,
66
, pp.
1508
1513
.
8.
Ceperley
,
P. H.
, 1982, “
Resonant Traveling Wave Engine
,” U. S. Patent No. 4,355,
517
.
9.
Walker
,
G.
, 1960,
Stirling Engines
,
Clarendon
,
Oxford
.
10.
Yazaki
,
T.
,
Iwata
,
A.
,
Maekawa
,
T.
, and
Tominaga
A.
, 1998, “
Traveling Wave Thermoacoustic Engine in a Looped Tube
,”
Phys. Rev. Lett.
,
81
, pp.
3128
3131
.
11.
Li
,
Q.
,
Wu
,
F.
,
Guo
,
F.
,
Wu
,
C.
, and
Wu
,
J.
, 2003, “
Thermodynamic Analysis of Thermoacoustic Self-Excited Oscillation
,”
Open Syst. Inf. Dyn.
,
10
, pp.
391
402
.
12.
Yu
,
Z. B.
,
Li
,
Q.
,
Chen
,
X.
,
Guo
,
F. Z.
,
Xie
,
X. J.
, and
Wu
,
J. H.
, 2003, “
Investigation on the Oscillation Modes in a Thermoacoustic Stirling Prime Mover: Mode Stability and Mode Transition
,”
Cryogenics
,
43
, pp.
687
691
.
13.
Rivera-Alvarez
,
A.
, and
Chejne
,
F.
, 2004, “
Non-Linear Phenomena in Thermoacoustic Engines
,”
J. Non-Equilib. Thermodyn.
,
29
(
3
), pp.
209
220
.
14.
de Waele
,
A. T. A. M.
, 2009, “
Basic Treatment of Onset Conditions and Transient Effects in Thermoacoustic Stirling Engines
,”
J. Sound Vib.
,
325
, pp.
974
988
.
15.
Martini
,
W. R.
,
Johnson
,
R. P.
, and
White
,
M. A.
, 1974, “
Stirling Engine Power System and Coupler
,” U.S. Patent No. 3,833,
388
.
16.
Keolian
,
R. M.
and
Bastyr
,
K. J.
, 2006, “
Thermoacoustic Piezoelectric Generator
,” U.S. Patent No. 7081699.
17.
Symko
,
O. G.
,
Abdel-Rahman
,
E.
,
Kwon
,
Y. S.
,
Emmi
,
M.
, and
Behunin
,
R.
, 2004, “
Design and Development of High-Frequency Thermoacoustic Engines for Thermal Management in Microelectronics
,”
Microelectron. J.
,
35
, pp.
185
191
.
18.
Symko
,
O. G.
, and
Abdel-Rahman
,
E.
, 2007, “
High Frequency Thermoacoustic Refrigerator
,” U.S. Patent No. 7,240,
495
.
19.
Matveev
,
K. I.
,
Wekin
,
A.
,
Richards
,
C. D.
, and
Shafrei-Tehrany
,
N.
, 2007, “
On the Coupling Between Standing-Wave Thermoacoustic Engine and Piezoelectric Transducer
,”
Proc. of IMECE2007 2007 ASME International Mechanical Engineering Congress and Exposition, Nov. 11—15
,
Seattle, Washington
, Paper No. IMECE2007-41119.
20.
ANSI/IEEE
American National Standards/Institute of Electrical and Electronics Engineers, “Standard on Piezoelectricity
” (IEEE, New York, 1987), Paper No. ANSI/IEEE STD:176-1987.
You do not currently have access to this content.