Coupling a fluidic flexible matrix composite (F2MC) to an air-pressurized fluid port produces a fundamentally new class of tunable vibration isolators. This Fluidlastic device provides significant vibration reduction at an isolation frequency that can be tuned over a broad frequency range. The material properties and geometry of the F2MC element, as well as the port inertance, determine the isolation frequency. A unique feature of this device is that the port inertance depends on pressure so the isolation frequency can be adjusted by changing the air pressure. For constant port inertance, the isolation frequency is largely independent of the isolated mass so the device is robust to changes in load. A nonlinear model is developed to predict isolator length and port inertance. The model is linearized and the frequency response calculated. Experiments agree with theory, demonstrating a tunable isolation range from 9 Hz to 36 Hz and transmitted force reductions of up to 60 dB at the isolation frequency.

References

1.
de Silva
,
C. W.
, ed., 2005,
Vibration and Shock Handbook
,
CRC Press
,
Boca Raton, FL
, pp.
23
–4–23–
12
.
2.
Frahm
,
H.
, 1911, “
Device for Damping Vibrations of Bodies
,” U.S. Patent No. 989,958.
3.
Ormondroyd
,
J.
, and
Den Hartog
,
J. P.
, 1928, “
The Theory of the Dynamic Vibration Absorber
,”
ASME J. Appl. Mech.
50
(
17
), pp.
9
22
.
4.
Palm
, III,
W. J.
, 2007,
Mechanical Vibration
,
Wiley
,
Hoboken, NJ
, p.
469
.
5.
Lai
,
J. S.
, and
Wang
,
K. W.
, 1996, “
Parametric Control of Structural Vibrations via Adaptable Stiffness Dynamic Absorbers
,”
J. Vibr. Acoust.
118
(
1
), pp.
41
47
.
6.
Kemp
,
J. D.
, and
Clark
,
R. L.
, 2002, “
Optimal Hybrid Active/Passive Vibration Control Design
,”
Proceedings of SPIE Conference on Smart Structures and Materials: Modeling, Signal Processing, and Control
, Vol.
4693
, pp.
440
450
.
7.
Lotfi-Gaskarimahalle
,
A.
,
Shan
,
Y.
,
Li
,
S.
Rahn
,
C. D.
,
Bakis
,
C. E.
, and
Wang
,
K. W.
, 2008, “
Stiffness Shaping for Zero Vibration Fluidic Flexible Matrix Composites
,”
Proceedings of ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems
, Vol.
2
, pp.
409
417
.
8.
Hiemenz
,
G. J.
,
Hu
,
W.
, and
Wereley
,
N. M.
, 2008, “
Semi-Active Magnetorheological Helicopter Crew Seat Suspension for Vibration Isolation
,”
J. Aircr.
,
45
(
3
), pp.
945
953
.
9.
Han
,
Y. M.
,
Jung
,
J. Y.
,
Choi
,
S. B.
,
Choi
,
Y. T.
, and
Wereley
,
N. M.
, 2006, “
Ride Quality Investigation of an Electrorheological Seat Suspension to Minimize Human Body Vibrations
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
,
220
(
2
), pp.
139
150
.
10.
Davis
,
C. L.
, and
Lesieutre
,
G. A.
, 2000, “
An Actively Tuned Solid-State Vibration Absorber Using Capacitive Shunting of Piezoelectric Stiffness
,”
J. Sound. Vib.
232
(
3
), pp.
601
618
.
11.
Clark
,
W. W.
, 1999, “
Semi-Active Vibration Control With Piezoelectric Materials as Variable Stiffness Actuators
,”
Proceedings of SPIE Conference on Passive Damping and Isolation
, Vol.
3672
, pp.
123
130
.
12.
Flannelly
,
W. G.
, 1967, “
Dynamic Antiresonant Vibration Isolator
,” U.S. Patent No. 3,322,379.
13.
Halwes
,
D. R.
, 1980, “
LIVE - Liquid Inertia Vibration Eliminator
,”
American Helicopter Society 36th Annual Forum
,
Washington, D.C
.
14.
Smith
,
M. R.
, and
Redinger
,
W. S.
, 1999, “
The Model 427 Pylon Isolation System
,”
American Helicopter Society 55th Annual Forum
,
Montreal
,
Québec, Canada
.
15.
McGuire
,
D. P.
, 2003, “
High Stiffness (“Rigid”) Helicopter Pylon Vibration Isolation Systems
,”
American Helicopter Society 59th Annual Forum
,
Phoenix
,
Arizona
.
16.
Jones
,
P. J.
, and
Downing
,
M. W.
, 1993, “
Adaptive Fluid Mount
,” U.S. Patent No. 5,197,692.
17.
Smith
,
M. R.
, and
Stamps
,
F. B.
, 1995,
“Vibration Isolation System
,” U.S. Patent No. 5,435,531.
18.
Hodgson
,
D. A.
, and
Duclos
,
T. G.
, 1990, “
Mount With Adjustable Length Inertia Track
,” U.S. Patent No. 4,969,632.
19.
du Plooy
,
N. F.
,
Heyns
,
P. S.
, and
Brennan
,
M. J.
, 2005, “
The Development of a Tunable Vibration Absorbing Isolator
,”
Int. J. Mech. Sci.
,
47
(
7
), pp.
983
997
.
20.
Smith
,
M. R.
,
Lee
,
T.
, and
Merkley
,
D. J.
, 2005, “
Active Vibration Treatment Using Piezo-LIVE Technology
,”
Proceedings of 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
.
21.
Philen
,
M.
,
Shan
,
Y.
,
Prakash
,
P.
,
Wang
,
K.
,
Rahn
,
C.
,
Zydney
,
A.
, and
Bakis
,
C.
, 2007, “
Fibrillar Network Adaptive Structure With Ion-Transport Actuation
,”
J. Intell. Mater. Syst. Struct.
,
18
(
4
), pp.
323
334
.
22.
Caldwell
,
D.
,
Medrano-Cerda
,
G.
, and
Goodwin
,
M.
, 1993, “
Braided Pneumatic Actuator Control of a Multi-Jointed Manipulator
,”
Proceedings of IEEE International Conference on Systems, Man and Cybernetics
, Vol.
1
, pp.
423
428
.
23.
Chou
,
C.
, and
Hannaford
,
B.
, 1994, “
Static and Dynamic Characteristics of McKibben Pneumatic Artificial Muscles
,”
Proceedings of IEEE International Conference on Robotics and Automation
, Vol.
1
, pp.
281
286
.
24.
Pritts
,
M. B.
, and
Rahn
,
C. D.
, 2004, “
Design of an Artificial Muscle Continuum Robot
,”
Proceedings of IEEE International Conference on Robotics and Automation
, Vol.
5
, pp.
4742
4746
.
25.
Liu
,
W.
, and
Rahn
,
C. D.
, 2003, “
Fiber-Reinforced Membrane Models of McKibben Actuators
,”
J. Appl. Mech.
70
(
6
), pp.
853
859
.
26.
Shan
,
Y.
,
Philen
,
M.
,
Bakis
,
C.
,
Wang
,
K.
, and
Rahn
,
C.
, 2006, “
Nonlinear-Elastic Finite Axisymmetric Deformation of Flexible Matrix Composite Membranes Under Internal Pressure and Axial Force
,”
Compos. Sci. Technol.
66
(
15
), pp.
3053
3063
.
27.
Philen
,
M.
,
Shan
,
Y.
,
Bakis
,
C. E.
,
Wang
,
K. W.
, and
Rahn
,
C. D.
, 2006, “
Variable Stiffness Adaptive Structures Utilizing Hydraulically Pressurized Flexible Matrix Composites With Valve Control
,”
Proceedings of 47th AIAA/ASME/ASCE/ASC Structures, Structural Dynamics, and Materials Conference
, Vol.
9
, pp.
6387
6397
.
28.
Shan
,
Y.
,
Lotfi-Gaskarimahalle
,
A.
,
Philen
,
M.
,
Li
,
S.
,
Bakis
,
C. E.
,
Rahn
,
C. D.
, and
Wang
,
K. W.
, 2007, “
Fluidic Flexible Matrix Composites for Autonomous Structural Tailoring
,”
Proceedings of SPIE Conference on Active and Passive Smart Structures and Integrated Systems
, Vol.
6525
, p.
652517
.
29.
Lotfi-Gaskarimahalle
,
A.
,
Scarborough
, III,
L. H.
,
Rahn
,
C. D.
, and
Smith
,
E. C.
, 2009, “
Fluidic Composite Tuned Vibration Absorbers
,”
Proceedings of ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems
, Vol.
1
, pp.
501
508
.
30.
Trivedi
,
D.
,
Lotfi-Gaskarimahalle
,
A.
, and
Rahn
,
C. D.
, 2007, “
Geometrically Exact Dynamic Models for Soft Robotic Manipulators
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems
, pp.
1497
1502
.
31.
Treloar
,
L. R. G.
, 1975,
The Physics of Rubber Elasticity
, 3rd ed.
Clarendon Press
,
Oxford
, pp.
64
65
.
You do not currently have access to this content.