We study the stiffening and damping effects that local essentially nonlinear attachments can have on the dynamics of a primary linear structure. These local attachments can be designed to act as nonlinear energy sinks (NESs) of shock-induced energy by engaging in isolated resonance captures or resonance capture cascades with structural modes. After the introduction of the NESs, the effective stiffness and damping properties of the structure are characterized through appropriate measures, developed within this work, which are based on the energy contained within the modes of the primary structure. Three types of NESs are introduced in this work, and their effects on the stiffness and damping properties of the linear structure are studied via (local) instantaneous and (global) weighted-averaged effective stiffness and damping measures. Three different applications are considered and show that these attachments can drastically increase the effective damping properties of a two-degrees-of-freedom system and, to a lesser degree, the stiffening properties as well. An interesting finding reported herein is that the essentially nonlinear attachments can introduce significant nonlinear coupling between distinct structural modes, thus paving the way for nonlinear energy redistribution between structural modes. This feature, coupled with the well-established capacity of NESs to passively absorb and locally dissipate shock energy, can be used to create effective passive mitigation designs of structures under impulsive loads.

References

1.
Nayfeh
,
A. H.
, and
Mook
D.
, 1990,
Nonlinear Oscillations
,
Wiley
,
New York
.
2.
Manevitch
,
L. I.
, 1999, “
Complex Representation of Dynamics of Coupled Oscillators
,” in
Mathematical Models of Nonlinear Excitations, Transfer Dynamics and Control in Condensed Systems
,
Kluwer Academic/Plenum
,
New York
.
3.
Aboudi
,
J.
, 1993, “
Response Prediction of Composites Composed of Stiffening Fibers and Nonlinear Resin Matrix
,”
Compos. Sci. Technol.
,
46
, pp.
51
58
.
4.
Karray
,
F.
,
Grewal
,
A.
,
Glaum
,
M.
, and
Modi
,
V.
, 1997, “
Stiffening Control of a Class of Nonlinear Affine Systems
,”
IEEE Trans. Aerosp. Electron. Syst.
,
33
(
2
), pp.
473
484
.
5.
Kasza
,
K. E.
,
Nakamura
,
F.
,
Hu
,
S.
,
Kollmannsberger
,
P.
,
Bonakdar
,
N.
,
Fabry
,
B.
,
Stossel
,
T. P.
,
Wang
,
N.
, and
Weitz
,
D. A.
, 2009, “
Filamin A Is Essential for Active Cell Stiffening but Not Passive Stiffening Under External Force
,”
Biophys. J.
,
96
, pp.
4326
4335
.
6.
Lakes
,
R. S.
, 2001, “
Extreme Damping in Composite Materials With a Negative Stiffness Phase
,”
Phys. Rev. Lett.
,
86
(
13
), pp.
2897
2900
.
7.
Wang
,
Y. C.
, and
Lakes
,
R. S.
, 2003, “
Extreme Stiffness Systems Due to Negative Stiffness Elements
,”
Am. J. Phys.
,
72
(
1
), pp.
40
50
.
8.
Huang
,
H. H.
, and
Sun
,
C. T.
, 2009, “
Wave Attenuation Mechanism in an Acoustic Metamaterial With Negative Effective Mass Density
,”
New J. Phys.
,
11
,
013003
.
9.
Vakakis
,
A. F.
,
Gendelman
,
O.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
,
Kerschen
,
G.
, and
Lee
,
Y. S.
, 2008,
Passive Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems: I and II
,
Springer
,
New York
.
10.
Arnold
,
V. I.
, ed., 1988,
Encyclopedia of Mathematical Sciences, Dynamical Systems III
,
Springer-Verlag
,
Berlin
, 1988.
11.
Geldenman
,
O. V.
,
Manevitch
,
L. I.
,
Vakakis
,
A. F.
, and
M’Closkey
,
R.
, 2001, “
Energy Pumping in Nonlinear Mechanical Oscillators I: Dynamics of the Underlying Hamiltonian Systems
,”
J. Appl. Mech.
,
68
(
1
), pp.
34
41
.
12.
Vakakis
,
A. F.
, and
Gendelman
,
O. V.
, 2001, “
Energy Pumping in Nonlinear Mechanical Oscillators II: Resonance Capture
,”
J. Appl. Mech.
,
68
, pp.
42
48
.
13.
Vakakis
,
A. F.
, 2001, “
Inducing Passive Nonlinear Energy Sinks in Vibrating Systems
,”
J. Vibr. Acoust.
,
123
, pp.
324
332
.
14.
Gourdon
,
E.
,
Coutel
,
S.
,
Lamarque
,
C. H.
, and
Pernot
,
S.
, 2005, “
Nonlinear Energy Pumping With Strongly Nonlinear Coupling: Identification of Resonance Captures in Numerical and Experimental Results
,”
Proceedings of the 20th ASME Biennial Conference on Mechanical Vibration and Noise
, Long Beach, CA, Sept. 24–28.
15.
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
, 2005, “
Experimental Study of Nonlinear Energy Pumping Occurring at a Single Fast Frequency
,”
Int. J. Non-Linear Mech.
,
40
, pp.
891
899
.
16.
Andersen
,
D.
,
Starosvetsky
,
Y.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
, “
Dynamic Instabilities in Coupled Oscillators Induced by Geometrically Nonlinear Viscous Damping
,”
Nonlinear Dyn.
17.
Quinn
,
D. D.
,
Triplett
,
A. L.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
, “
Energy Harvesting from Impulsive Loads Using Intentional Essential Nonlinearities
,”
J. Vibr. Acoust.
,
133
,
011004
.
18.
Gendelman
,
O. V.
,
Sapsis
,
T.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
, 2011, “
Enhanced Passive Targeted Energy Transfer in Strongly Nonlinear Mechanical Oscillators
,”
J. Sound Vib.
,
330
, pp.
1
8
.
19.
Nucera
,
F.
,
Lo Iacono
,
F.
,
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
, 2008, “
Application of Broadband Nonlinear Targeted Energy Transfers for Seismic Mitigation of a Shear Frame: Part II, Experimental Results
,”
J. Sound Vib.
,
313
, pp.
57
76
.
20.
Nucera
,
F.
,
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
, 2010, “
Application of Broadband Nonlinear Targeted Energy Transfers for Seismic Mitigation of a Shear Frame: Part I, Computational Results
,”
J. Sound Vib.
,
329
(
15
), pp.
2973
2994
.
21.
Tsakirtzis
,
S.
,
Panagopoulos
,
P. N.
,
Kerschen
,
G.
,
Gendelman
,
O.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
, 2007, “
Complex Dynamics and Targeted Energy Transfer in Systems of Linear Oscillators Coupled to Multi-Degree-of-Freedom Essentially Nonlinear Attachments
,”
Nonlinear Dyn.
,
48
, pp.
285
318
.
22.
Xu
,
X.
, and
Kup
,
Y.
, “
Tensegrity Structures With Buckling Members Explain Nonlinear Stiffening and Reversible Softening of Actin Networks
,”
J. Eng. Mech.
,
135
(
12
), pp.
1368
1374
.
You do not currently have access to this content.