In this work, the forced response of rotating rings exhibiting nonperiodic and periodic variations in material properties and geometry is assessed by means of the spectral element method (SEM). Based on the Euler–Bernoulli beam theory, a spectral element for a planar rotating ring is derived. This spectral element allows the investigation of the effects of structural damping, internal pressure and elastic foundations in the harmonic response of rotating rings. The dynamic response of rotating rings including periodic imperfections that lead to band gap effects is addressed. The spectral element formulation provides exact solutions within the range of validity of the applied theory using a reduced number of degrees-of-freedom. Thus, it contributes to reducing the computational time. It also provides a straightforward way to solve structural dynamics problems including arbitrary boundary conditions and discontinuities. The proposed formulation is validated by comparison with analytical solutions, which are available only for uniform homogenous rings.

References

1.
Bickford
,
W. B.
, and
Reddy
,
E. S.
,
1985
, “
On the In-Plane Vibrations of Rotating Ring
,”
J. Sound Vib.
,
101
(
1
), pp.
13
22
.10.1016/S0022-460X(85)80034-1
2.
Endo
,
M.
,
Hatamura
,
K.
,
Sakata
,
M.
, and
Taniguchi
,
O.
,
1984
, “
Flexural Vibrations of a Thin Rotating Ring
,”
ASME J. Sound Vib.
,
92
(
2
), pp.
261
272
.10.1016/0022-460X(84)90560-1
3.
Huang
,
S. C.
, and
Soedel
,
W.
,
1987
, “
Effects of Coriolis Acceleration on the Free and Forced In-Plane Vibrations of Rotating Rings on Elastic Foundation
,”
J. Sound Vib.
,
115
(2), pp.
253
274
.10.1016/0022-460X(87)90471-8
4.
Kim
,
W.
, and
Chung
,
J.
,
2002
, “
Free Non-Linear Vibration of a Rotating Thin Ring With the In-Plane and Out-of-Plane Motions
,”
J. Sound Vib.
,
258
(
1
), pp.
167
178
.10.1006/jsvi.2002.5104
5.
Delamotte
,
J. C.
,
Nascimento
,
R. F.
, and
Arruda
,
J. R. F.
,
2008
, “
Simple Models for the Dynamic Modeling of Rotating Tires
,”
Shock Vib.
,
15
(
3
), pp.
383
393
.10.1155/2008/512590
6.
Deymier
,
P. A.
,
2013
,
Acoustic Metamaterials and Phononic Crystals
,
Springer
,
New York
.
7.
Huang
,
S. C.
, and
Soedel
,
W.
,
1987
, “
Response of Rotating Rings to Harmonic and Periodic Loading and Comparison With the Inverted Problem
,”
J. Sound Vib.
,
118
(
2
), pp.
253
270
.10.1016/0022-460X(87)90524-4
8.
Doyle
,
J. F.
,
1997
,
Wave Propagation in Structures
,
Springer
,
New York
.
9.
Lee
,
U.
,
2009
,
Spectral Element Method in Structural Dynamic
,
John Wiley & Sons
,
Singapore
.
10.
Kang
,
B.
,
Riedel
,
C. H.
, and
Tan
,
C. A.
,
2003
, “
Free Vibration Analysis of a Planar Curved Beam by Wave Propagation
,”
J. Sound Vib.
,
260
(
1
), pp.
19
44
.10.1016/S0022-460X(02)00898-2
11.
Lee
,
S. K.
,
Mace
,
B. R.
, and
Brennan
,
M. J.
,
2007
, “
Wave Propagation, Reflection, and Transmission in Curved Beams
,”
J. Sound Vib.
,
306
(
3–5
), pp.
636
656
.10.1016/j.jsv.2007.06.001
12.
Huang
,
D.
,
Liang
,
T.
, and
Cao
,
R.
,
2013
, “
Free Vibration Analysis of Planar Rotating Ring by Wave Propagation
,”
J. Sound Vib.
,
332
(20), pp.
4979
4997
.10.1016/j.jsv.2013.04.019
13.
Xiuchang
,
H.
,
Hongxing
,
H.
,
Yu
,
W.
, and
Zhipeng
,
D.
,
2013
, “
Research on Wave Mode Conversion of Curved Beam Structures by the Wave Approach
,”
ASME J. Vib. Acoust.
,
135
(
3
), p.
031014
.10.1115/1.4023817
14.
Harvey
,
J. F.
,
1985
,
Theory and Design of Pressure Vessels
,
Van Nostrand Reinhold Company
,
New York
.
You do not currently have access to this content.