In the ultraprecision vibration isolation systems, it is desirable for the isolator to have a larger load bearing capacity and a broader isolation bandwidth simultaneously. Generally, pneumatic spring can bear large load and achieve relatively low natural frequency by enlarging its chamber volume. However, the oversized isolator is inconvenient to use and might cause instability. To reduce the size, a miniaturized pneumatic vibration isolator (MPVI) with high-static-low-dynamic stiffness (HSLDS) is developed in this paper. The volume of proposed isolator is minimized by a compact structure design that combines two magnetic rings in parallel with the pneumatic spring. The two magnetic rings are arranged in the repulsive configuration and can be mounted into the chamber to provide the negative stiffness. Then dynamic model of the developed MPVI is built and the isolation performances are analyzed. Finally, experiments on the isolator with and without the magnetic rings are conducted. The final experimental results are consistent with the dynamical model and verify the effectiveness of the developed vibration isolator.

References

1.
Mead
,
D. J.
, and
Meador
,
D.
,
1998
,
Passive Vibration Control
,
Wiley
,
Chichester, UK
, pp.
42
45
.
2.
Pu
,
H.
,
Luo
,
X.
, and
Chen
,
X.
,
2011
, “
Modeling and Analysis of Dual-Chamber Pneumatic Spring With Adjustable Damping for Precision Vibration Isolation
,”
J. Sound Vib.
,
330
(
15
), pp.
3578
3590
.10.1016/j.jsv.2011.03.005
3.
Ibrahim
,
R.
,
2008
, “
Recent Advances in Nonlinear Passive Vibration Isolators
,”
J. Sound Vib.
,
314
(
3
), pp.
371
452
.10.1016/j.jsv.2008.01.014
4.
Platus
,
D. L.
, 1999, “
Negative-Stiffness-Mechanism Vibration Isolation Systems
,”
Proc. SPIE
,
3786
, pp.
98
105
.10.1117/12.363841
5.
Fulcher
,
B. A.
,
Shahan
,
D. W.
,
Haberman
,
M. R.
,
Seepersad
,
C. C.
, and
Wilson
,
P. S.
,
2014
, “
Analytical and Experimental Investigation of Buckled Beams as Negative Stiffness Elements for Passive Vibration and Shock Isolation Systems
,”
ASME J. Vib. Acoust.
,
136
(
3
), p.
031009
.10.1115/1.4026888
6.
Carrella
,
A.
,
Brennan
,
M.
, and
Waters
,
T.
,
2007
, “
Optimization of a Quasi-Zero-Stiffness Isolator
,”
J. Mech. Sci. Technol.
,
21
(
6
), pp.
946
949
.10.1007/BF03027074
7.
Kovacic
,
I.
,
Brennan
,
M. J.
, and
Waters
,
T. P.
,
2008
, “
A Study of a Nonlinear Vibration Isolator With a Quasi-Zero Stiffness Characteristic
,”
J. Sound Vib.
,
315
(
3
), pp.
700
711
.10.1016/j.jsv.2007.12.019
8.
Carrella
,
A.
,
Brennan
,
M.
,
Waters
,
T.
, and
Shin
,
K.
,
2008
, “
On the Design of a High-Static–Low-Dynamic Stiffness Isolator Using Linear Mechanical Springs and Magnets
,”
J. Sound Vib.
,
315
(
3
), pp.
712
720
.10.1016/j.jsv.2008.01.046
9.
Robertson
,
W. S.
,
Kidner
,
M. R. F.
,
Cazzolato
,
B. S.
, and
Zander
,
A. C.
,
2009
, “
Theoretical Design Parameters for a Quasi-Zero Stiffness Magnetic Spring for Vibration Isolation
,”
J. Sound Vib.
,
326
(
1
), pp.
88
103
.10.1016/j.jsv.2009.04.015
10.
Zhou
,
N.
, and
Liu
,
K.
,
2010
, “
A Tunable High-Static–Low-Dynamic Stiffness Vibration Isolator
,”
J. Sound Vib.
,
329
(
9
), pp.
1254
1273
.10.1016/j.jsv.2009.11.001
11.
Li
,
Q.
,
Zhu
,
Y.
,
Xu
,
D.
,
Hu
,
J.
,
Min
,
W.
, and
Pang
,
L.
,
2013
, “
A Negative Stiffness Vibration Isolator Using Magnetic Spring Combined With Rubber Membrane
,”
J. Mech. Sci. Technol.
,
27
(
3
), pp.
813
824
.10.1007/s12206-013-0128-5
12.
Bassani
,
R.
,
2006
, “
Earnshaw (1805–1888) and Passive Magnetic Levitation
,”
Meccanica
,
41
(
4
), pp.
375
389
.10.1007/s11012-005-4503-x
13.
Lulin
,
T.
,
Yan
,
L.
,
Guoqing
,
Y.
,
Jing
,
Y.
, and
Jianming
,
Z.
,
2007
, “
Study of the Axial Magnetic Force of Radial Magnetization Bi-Barrel-Shaped Permanent Magnetic Bearings (PMB)
,”
Mech. Sci. Technol. Aerosp. Eng.
,
26
(
9
), pp.
1216
1219
.
14.
Heertjes
,
M.
, and
van de Wouw
,
N.
,
2006
, “
Nonlinear Dynamics and Control of a Pneumatic Vibration Isolator
,”
ASME J. Vib. Acoust.
,
128
(
4
), pp.
439
448
.10.1115/1.2128642
You do not currently have access to this content.