This paper develops an analytical model to investigate the effect of inhomogeneity in races on the dynamic behaviors of rolling bearing. The governing differential equations are obtained based on the Hertz contact theory and bearing kinematic equations with the centrifugal force and frictions considered. The surface disturbed displacement caused by inhomogeneities is obtained by the semi-analytical method (SAM) and treated as local surface defect in equations of motion through load–deformation relation. For the first time, the effect of material inhomogeneity on dynamics of rolling bearing is explored. The result shows that the inhomogeneity can make the system motion more complicated. The inhomogeneity in the inner race has a greater influence than in the outer race.

References

1.
Kuo
,
C. H.
,
2007
, “
Stress Disturbances Caused by the Inhomogeneity in an Elastic Half-Space Subjected to Contact Loading
,”
Int. J. Solids Struct.
,
44
(
3
), pp.
860
873
.
2.
Kuo
,
C. H.
,
2008
, “
Contact Stress Analysis of an Elastic Half-Plane Containing Multiple Inclusions
,”
Int. J. Solids Struct.
,
45
(
16
), pp.
4562
4573
.
3.
Leroux
,
J.
,
Fulleringer
,
B.
, and
Nélias
,
D.
,
2010
, “
Contact Analysis in Presence of Spherical Inhomogeneities Within a Half-Space
,”
Int. J. Solids Struct.
,
47
(
22
), pp.
3034
3049
.
4.
Zhou
,
K.
,
Chen
,
W. W.
,
Keer
,
L. M.
,
Ai
,
X. L.
,
Sawamiphakdi
,
K.
,
Glaws
,
P.
, and
Wang
,
Q.
,
2011
, “
Multiple 3D Inhomogeneous Inclusions in a Half Space Under Contact Loading
,”
Mech. Mater.
,
43
(
8
), pp.
444
457
.
5.
Meyer
,
L. D.
,
Ahlgren
,
F. F.
, and
Weichbrodt
,
B.
,
1980
, “
An Analytic Model for Ball Bearing Vibrations to Predict Vibration Response to Distributed Defects
,”
ASME J. Mech. Des.
,
102
(
2
), pp.
205
210
.
6.
Wardle
,
F. P.
, and
Poon
,
S. Y.
,
1983
, “
Rolling Bearing Noise-Cause and Cure
,”
CME Chart. Mech. Eng.
,
30
(
7
), pp.
36
40
.
7.
Wardle
,
F. P.
,
1988
, “
Vibration Forces Produced by Waviness of the Rolling Surfaces of Thrust Loaded Ball Bearings—Part I: Theory
,”
Proc. Inst. Mech. Eng., Part C
,
202
(
5
), pp.
305
312
.
8.
Choudhury
,
A.
, and
Tandon
,
N.
,
1998
, “
A Theoretical Model to Predict Vibration Response of Rolling Bearings to Distributed Defects Under Radial Load
,”
ASME J. Vib. Acoust.
,
120
(
1
), pp.
214
220
.
9.
Aktuürk
,
N.
,
1999
, “
The Effect of Waviness on Vibrations Associated Witli Ball Bearings
,”
ASME J. Tribol.
,
121
(
4
), pp.
667
677
.
10.
Lynagh
,
N.
,
Rahnejat
,
H.
,
Ebrahimia
,
M.
, and
Ainib
,
R.
,
2000
, “
Bearing Induced Vibration in Precision High Speed Routing Spindles
,”
Int. J. Mach. Tools Manuf.
,
40
(
4
), pp.
561
577
.
11.
Harsha
,
S. P.
,
Sandeep
,
K.
, and
Prakash
,
R.
,
2004
, “
Non-Linear Dynamic Behaviors of Rolling Element Bearings Due to Surface Waviness
,”
J. Sound Vib.
,
272
(
3
), pp.
557
580
.
12.
Harsha
,
S. P.
,
2006
, “
Nonlinear Dynamic Analysis of a High-Speed Rotor Supported by Rolling Element Bearings
,”
J. Sound Vib.
,
290
(
1
), pp.
65
100
.
13.
McFadden
,
P. D.
, and
Smith
,
J. D.
,
1984
, “
Model for the Vibration Produced by a Single Point Defect in a Rolling Element Bearing
,”
J. Sound Vib.
,
96
(
1
), pp.
69
82
.
14.
McFadden
,
P. D.
, and
Smith
,
J. D.
,
1985
, “
The Vibration Produced by Multiple Point Defects in a Rolling Element Bearing
,”
J. Sound Vib.
,
98
(
2
), pp.
263
273
.
15.
Zoladz
,
T.
,
Earhart
,
E.
, and
Fiorucci
,
T.
,
1995
, “
Bearing Defect Signature Analysis Using Advanced Nonlinear Signal Analysis in a Controlled Environment
,” NASA Marshall Space Flight Center, Huntsville, AL,
NASA
Technical Memorandum No. 108491.
16.
Tandon
,
N.
, and
Choudhury
,
A.
,
1997
, “
An Analytical Model for the Prediction of the Vibration Response of Rolling Element Bearings Due to a Localized Defect
,”
J. Sound Vib.
,
205
(
3
), pp.
275
292
.
17.
Sopanen
,
J.
, and
Mikkola
,
A.
,
2003
, “
Dynamic Model of a Deep-Groove Ball Bearing Including Localized and Distributed Defects. Part 1: Theory
,”
Proc. Inst. Mech. Eng., Part K
,
217
(
3
), pp.
201
211
.
18.
Sopanen
,
J.
, and
Mikkola
,
A.
,
2003
, “
Dynamic Model of a Deep-Groove Ball Bearing Including Localized and Distributed Defects. Part 2: Implementation and Results
,”
Proc. Inst. Mech. Eng., Part K
,
217
(
3
), pp.
213
223
.
19.
Ashtekar
,
A.
,
Sadeghi
,
F.
, and
Stacke
,
L. E.
,
2010
, “
Surface Defects Effects on Bearing Dynamics
,”
Proc. Inst. Mech. Eng., Part J
,
224
(
1
), pp.
25
35
.
20.
Arslan
,
H.
, and
Aktürk
,
N.
,
2008
, “
An Investigation of Rolling Element Vibrations Caused by Local Defects
,”
ASME J. Tribol.
,
130
(
4
), pp.
1
12
.
21.
Patel
, V
. N.
,
Tandon
,
N.
, and
Pandey
,
R. K.
,
2010
, “
A Dynamic Model for Vibration Studies of Deep Groove Ball Bearings Considering Single and Multiple Defects in Races
,”
ASME J. Tribol.
,
132
(
4
), pp.
1
10
.
22.
Sassi
,
S.
,
Badri
,
B.
, and
Thomas
,
M.
,
2007
, “
A Numerical Model to Predict Damaged Bearing Vibrations
,”
J. Vib. Control
,
13
(
11
), pp.
1603
1628
.
23.
Kankar
,
P. K.
,
Satish
,
C. S.
, and
Harsha
,
S. P.
,
2012
, “
Vibration Based Performance Prediction of Ball Bearings Caused by Localized Defects
,”
Nonlinear Dyn.
,
69
(
3
), pp.
847
875
.
24.
Zhang
,
Y.-Y.
,
Wang
,
X.-L.
,
Zhang
,
X.-Q.
, and
Yan
,
X.-L.
,
2014
, “
Dynamic Analysis of a High-Speed Rotor-Ball Bearing System Under Elastohydrodynamic Lubrication
,”
ASME J. Vib. Acoust.
,
136
(
6
), p.
061003
.
25.
Babu
,
C.
,
Tandon
,
N.
, and
Pandey
,
R.
,
2012
, “
Vibration Modeling of a Rigid Rotor Supported on the Lubricated Angular Contact Ball Bearings Considering Six Degrees of Freedom and Waviness on Balls and Races
,”
ASME J. Vib. Acoust.
,
134
(
1
), p.
011006
.
26.
Babu
,
C.
,
Tandon
,
N.
, and
Pandey
,
R.
,
2014
, “
Nonlinear Vibration Analysis of an Elastic Rotor Supported on Angular Contact Ball Bearings Considering Six Degrees of Freedom and Waviness on Balls and Races
,”
ASME J. Vib. Acoust.
,
136
(
4
), p.
044503
.
27.
Mura
,
T.
,
1987
,
Micromechanics of Defects in Solids
,
Martinus Nijhoff
,
Dordrecht, The Netherlands
.
28.
Eshelby
,
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. London, Ser. A
,
241
(
1226
), pp.
376
396
.
29.
Moschovidis
,
Z. A.
, and
Mura
,
T.
,
1975
, “
Two-Ellipsoidal Inhomogeneities by the Equivalent Inclusion Method
,”
ASME J. Appl. Mech.
,
42
(
4
), pp.
847
852
.
30.
Luo
,
H. A.
, and
Weng
,
G. J.
,
1987
, “
On Eshelby's Inclusion Problem in a Three-Phase Spherically Concentric Solid, and a Modification of Mori–Tanaka's Method
,”
Mech. Mater.
,
6
(
4
), pp.
347
361
.
31.
Nakasone
,
Y.
,
Nishiyama
,
H.
, and
Nojiri
,
T.
,
2000
, “
Numerical Equivalent Inclusion Method: A New Computational Method for Analyzing Stress Fields in and Around Inclusions of Various Shapes
,”
Mater. Sci. Eng. A
,
285
(
1
), pp.
229
238
.
32.
Fond
,
C.
,
Riccardi
,
A.
,
Schirrer
,
R.
, and
Montheillet
,
F.
,
2001
, “
Mechanical Interaction Between Spherical Inhomogeneities: An Assessment of a Method Based on the Equivalent Inclusion
,”
Eur. J. Mech. A
,
20
(
1
), pp.
59
75
.
33.
Shodja
,
H. M.
, and
Sarvestani
,
A. S.
,
2001
, “
Elastic Fields in Double Inhomogeneity by the Equivalent Inclusion Method
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
3
10
.
34.
Dong
,
C. Y.
,
Cheung
,
Y. K.
, and
Lo
,
S. H.
,
2002
, “
A Regularized Domain Integral Formulation for Inclusion Problems of Various Shapes by Equivalent Inclusion Method
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
31
), pp.
3411
3421
.
35.
Shodja
,
H. M.
, and
Roumi
,
F.
,
2005
, “
Overall Behavior of Composites With Periodic Multi-Inhomogeneities
,”
Mech. Mater.
,
37
(
2
), pp.
343
353
.
36.
Zhou
,
K.
,
Keer
,
L. M.
, and
Wang
,
Q. J.
,
2011
, “
Semi-Analytic Solution for Multiple Interacting Three-Dimensional Inhomogeneous Inclusions of Arbitrary Shape in an Infinite Space
,”
Int. J. Numer. Methods Eng.
,
87
(
7
), pp.
617
638
.
37.
Chiu
,
Y. P.
,
1977
, “
On the Stress Field Due to Initial Strains in a Cuboid Surrounded by an Infinite Elastic Space
,”
ASME J. Appl. Mech.
,
44
(
4
), pp.
587
590
.
38.
Chiu
,
Y. P.
,
1978
, “
On the Stress Field and Surface Deformation in a Half Space With a Cuboidal Zone in Which Initial Strains are Uniform
,”
ASME J. Appl. Mech.
,
45
(
2
), pp.
302
306
.
39.
Jacq
,
C.
,
Nélias
,
D.
,
Lormand
,
G.
, and
Girodin
,
D.
,
2002
, “
Development of a Three-Dimensional Semi-Analytical Elastic–Plastic Contact Code
,”
ASME J. Tribol.
,
124
(
4
), pp.
653
667
.
40.
Leroux
,
J.
, and
Nélias
,
D.
,
2011
, “
Stick-Slip Analysis of a Circular Point Contact Between a Rigid Sphere and a Flat Unidirectional Composite With Cylindrical Fibers
,”
Int. J. Solids Struct.
,
48
(
25
), pp.
3510
3520
.
41.
Zhou
,
K.
,
Keer
,
L. M.
,
Jane
Wang
,
Q.
,
Ai
,
X.
,
Sawamiphakdi
,
K.
,
Glaws
,
P.
,
Paire
,
M.
, and
Che
,
F.
,
2012
, “
Interaction of Multiple Inhomogeneous Inclusions Beneath a Surface
,”
Comput. Methods Appl. Mech. Eng.
,
217
, pp.
25
33
.
42.
Wang
,
Z. J.
,
Jin
,
X. Q.
,
Keer
,
L. M.
, and
Wang
,
Q.
,
2013
, “
Novel Model for Partial-Slip Contact Involving a Material With Inhomogeneity
,”
ASME J. Tribol.
,
135
(
4
), p.
041401
.
43.
Wang
,
Z. J.
,
Jin
,
X. Q.
,
Zhou
,
Q. H.
,
Ai
,
X. L.
,
Keer
,
L. M.
, and
Wang
,
Q.
,
2013
, “
An Efficient Numerical Method With a Parallel Computational Strategy for Solving Arbitrarily Shaped Inclusions in Elastoplastic Contact Problems
,”
ASME J. Tribol.
,
135
(
3
), p.
031401
.
44.
Koumi
,
K. E.
,
Zhao
,
L.
,
Leroux
,
J.
,
Chaise
,
T.
, and
Nélias
,
D.
,
2014
, “
Contact Analysis in the Presence of an Ellipsoidal Inhomogeneity Within a Half Space
,”
Int. J. Solids Struct.
,
51
(
6
), pp.
1390
1402
.
45.
Liu
,
S. B.
, and
Wang
,
Q.
,
2005
, “
Elastic Fields Due to Eigenstrains in a Half-Space
,”
ASME J. Appl. Mech.
,
72
(
6
), pp.
871
878
.
46.
Liu
,
S. B.
,
Jin
,
X. Q.
,
Wang
,
Z. J.
,
Keer
,
L. M.
, and
Wang
,
Q.
,
2012
, “
Analytical Solution for Elastic Fields Caused by Eigenstrains in a Half-Space and Numerical Implementation Based on FFT
,”
Int. J. Plast.
,
35
(
1
), pp.
135
154
.
47.
Wang
,
Z. J.
,
Jin
,
X. Q.
,
Keer
,
L. M.
, and
Wang
,
Q.
,
2012
, “
Numerical Methods for Contact Between Two Joined Quarter Spaces and a Rigid Sphere
,”
Int. J. Solids Struct.
,
49
(
18
), pp.
2515
2527
.
48.
Chen
,
Q.
,
Shao
,
E.
,
Zhao
,
D.
,
Guo
,
J.
, and
Fan
,
Z.
,
1991
, “
Measurement of the Critical Size of Inclusions Initiating Contact Fatigue Cracks and Its Application in Bearing Steel
,”
Wear
,
147
(
2
), pp.
285
294
.
49.
Harris
,
T.
,
1989
,
Rolling Bearing Analysis
,
Wiley
,
New York
.
50.
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
,
London
.
51.
Ai
,
X.
,
2015
, “
A Comprehensive Model for Assessing the Impact of Steel Cleanliness on Bearing Performance
,”
ASME J. Tribol.
,
137
(
1
), p.
011101
.
52.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
1995
,
Applied Nonlinear Dynamics Analytical, Computational and Experimental Methods
,
Wiley
,
New York
.
You do not currently have access to this content.