Piezoelectric energy harvesters typically perform poorly in the low frequency, low amplitude, and intermittent excitation environment of human movement. In this paper, a piezoelectric compliant mechanism (PCM) energy harvester is designed that consists of a polyvinylidene diflouoride (PVDF) unimorph clamped at the base and attached to a compliant mechanism at the tip. The compliant mechanism has two flexures that amplify the tip displacement to produce large motion of a proof mass and a low frequency first mode with an efficient (nearly quadratic) shape. The compliant mechanism is fabricated as a separate, relatively rigid frame with flexure hinges, simplifying the fabrication process, and surrounding and protecting the piezoelectric unimorph. The bridge structure of the PCM also self-limits the response to large amplitude impacts, improving the device robustness. Experiments show that the compliant hinge stiffness can be carefully tuned to approach the theoretical high power output and mode shape efficiency.

References

1.
Anton
,
S. R.
, and
Sodano
,
H. A.
,
2007
, “
A Review of Power Harvesting Using Piezoelectric Materials (2003–2006)
,”
Smart Mater. Struct.
,
16
(
3
), pp.
R1
R21
.
2.
Khaligh
,
A.
,
Zeng
,
P.
, and
Zheng
,
C.
,
2009
, “
Kinetic Energy Harvesting Using Piezoelectric and Electromagnetic Technologies—State of the Art
,”
IEEE Trans. Ind. Electron.
,
57
(
3
), pp.
850
860
.
3.
Granstrom
,
J.
,
Feenstra
,
J.
,
Sodano
,
H. A.
, and
Farinholt
,
K.
,
2007
, “
Energy Harvesting From a Backpack Instrumented With Piezoelectric Shoulder Straps
,”
Smart Mater. Struct.
,
16
(
5
), pp.
1810
1820
.
4.
Shenck
,
N. S.
, and
Paradiso
,
J. A.
,
2001
, “
Energy Scavenging With Shoe-Mounted Piezoelectrics
,”
IEEE Micro
,
21
(
3
), pp.
30
42
.
5.
Delnavaz
,
A.
, and
Voix
,
J.
,
2014
, “
Flexible Piezoelectric Energy Harvesting From Jaw Movements
,”
Smart Mater. Struct.
,
23
(
10
), p. 105020.
6.
Gorlatova
,
M.
,
Sarik
,
J.
,
Cong
,
M.
,
Kymissis
,
I.
, and
Zussmant
,
G.
,
2014
, “
Movers and Shakers: Kinetic Energy Harvesting for the Internet of Things
,”
ACM SIGMETR. Perf. Eval. Rev.
,
42
(
1
), pp.
407
419
.
7.
Ylli
,
K.
,
Hoffmann
,
D.
,
Willmann
,
A.
,
Becker
,
P.
,
Folkmer
,
B.
, and
Manoli
,
Y.
,
2015
, “
Energy Harvesting From Human Motion: Exploiting Swing and Shock Excitations
,”
Smart Mater. Struct.
,
24
(
2
), p. 025029.
8.
Ma
,
X.
,
Yeo
,
H. G.
,
Rahn
,
C. D.
, and
Trolier-McKinstry
,
S.
,
2015
, “
Efficient and Sensitive Energy Harvesting Using Piezoelectric MEMS Compliant Mechanisms
,”
ASME
Paper No. DETC2015-47539.
9.
Shen
,
D.
,
Park
,
J.-H.
,
Ajitsaria
,
J.
,
Choe
,
S.-Y.
,
Wikle
,
H. C.
, III
, and
Kim
,
D.-J.
,
2008
, “
The Design, Fabrication and Evaluation of a MEMS PZT Cantilever With an Integrated Si Proof Mass for Vibration Energy Harvesting
,”
J. Micromech. Microeng.
,
18
(
5
), p.
055017
.
10.
Renaud
,
M.
,
Fiorini
,
P.
, and
van Hoof
,
C.
,
2007
, “
Optimization of a Piezoelectric Unimorph for Shock and Impact Energy Harvesting
,”
Smart Mater. Struct.
,
16
(
4
), pp.
1125
1135
.
11.
Erturk
,
A.
, and
Inman
,
D. J.
,
2008
, “
A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters
,”
ASME J. Vib. Acoust.
,
130
(
4
), p.
041002
.
12.
Erturk
,
A.
, and
Inman
,
D. J.
,
2009
, “
An Experimentally Validated Bimorph Cantilever Model for Piezoelectric Energy Harvesting From Base Excitations
,”
Smart Mater. Struct.
,
18
(
2
), p.
025009
.
13.
Ajitsaria
,
J.
,
Choe
,
S. Y.
,
Shen
,
D.
, and
Kim
,
D. J.
,
2007
, “
Modeling and Analysis of a Bimorph Piezoelectric Cantilever Beam for Voltage Generation
,”
Smart Mater. Struct.
,
16
(
2
), pp.
447
454
.
14.
Xue
,
H.
,
Hu
,
Y.
, and
Wang
,
Q.-M.
,
2008
, “
Broadband Piezoelectric Energy Harvesting Devices Using Multiple Bimorphs With Different Operating Frequencies
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
55
(
9
), pp.
2104
2108
.
15.
Aladwani
,
A.
,
Aldraihem
,
O.
, and
Baz
,
A.
,
2014
, “
A Distributed Parameter Cantilevered Piezoelectric Energy Harvester With a Dynamic Magnifier
,”
Mech. Adv. Mater. Struct.
,
21
(
7
), pp.
566
578
.
16.
Kim
,
S.
,
Clark
,
W. W.
, and
Wang
,
Q.-M.
,
2005
, “
Piezoelectric Energy Harvesting With a Clamped Circular Plate: Analysis
,”
J. Intell. Mater. Syst. Struct.
,
16
(
10
), pp.
847
855
.
17.
Kim
,
S.
,
Clark
,
W. W.
, and
Wang
,
Q.-M.
,
2005
, “
Piezoelectric Energy Harvesting With a Clamped Circular Plate: Experimental Study
,”
J. Intell. Mater. Syst. Struct.
,
16
(
10
), pp.
855
863
.
18.
Jung
,
S.-M.
, and
Yun
,
K.-S.
,
2010
, “
Energy-Harvesting Device With Mechanical Frequency-Up Conversion Mechanism for Increased Power Efficiency and Wideband Operation
,”
Appl. Phys. Lett.
,
96
(
11
), p.
111906
.
19.
Galchev
,
T.
,
Aktakka
,
E. E.
, and
Najafi
,
K.
,
2012
, “
A Piezoelectric Parametric Frequency Increased Generator for Harvesting Low-Frequency Vibrations
,”
J. Microelectromech. Syst.
,
21
(
6
), pp.
1311
1320
.
20.
Pillatsch
,
P.
,
Yeatman
,
E. M.
, and
Holmes
,
A. S.
,
2013
, “
Magnetic Plucking of Piezoelectric Beams for Frequency Up-Converting Energy Harvesters
,”
Smart Mater. Struct.
,
23
(
2
), p.
25009
.
21.
Kulah
,
H.
, and
Najaf
,
K.
,
2008
, “
Energy Scavenging From Low-Frequency Vibrations by Using Frequency Up-Conversion for Wireless Sensor Applications
,”
IEEE Sens. J.
,
8
(
3
), pp.
261
268
.
22.
Zorlu
,
O.
,
Topal
,
E. T.
, and
Kulah
,
H.
,
2011
, “
A Vibration-Based Electromagnetic Energy Harvester Using Mechanical Frequency Up-Conversion Method
,”
IEEE Sens. J.
,
11
(
3
), pp.
481
488
.
23.
Gu
,
L.
, and
Livermore
,
C.
,
2011
, “
Impact-Driven, Frequency Up-Converting Coupled Vibration Energy Harvesting Device for Low Frequency Operation
,”
Smart Mater. Struct.
,
20
(
4
), p.
045004
.
24.
Liu
,
H.
,
Lee
,
C.
,
Kobayashi
,
T.
,
Tay
,
C. J.
, and
Quan
,
C.
,
2012
, “
Piezoelectric MEMS-Based Wideband Energy Harvesting Systems Using a Frequency-Up-Conversion Cantilever Stopper
,”
Sens. Actuators A
,
186
, pp.
242
248
.
25.
Yoon
,
H.-S.
,
Washington
,
G.
, and
Danak
,
A.
,
2005
, “
Modeling, Optimization, and Design of Efficient Initially Curved Piezoceramic Unimorphs for Energy Harvesting Applications
,”
J. Intell. Mater. Syst. Struct.
,
16
(
10
), pp.
877
888
.
26.
Roundy
,
S.
,
Leland
,
E. S.
,
Baker
,
J.
,
Carleton
,
E.
,
Reilly
,
E.
,
Lai
,
E.
,
Otis
,
B.
,
Rabaey
,
J. M.
,
Wright
,
P. K.
, and
Sundararajan
,
V.
,
2005
, “
Improving Power Output for Vibration-Based Energy Scavengers
,”
IEEE Pervasive Comput.
,
4
(
1
), pp.
28
36
.
27.
Lobontiu
,
N.
,
2002
,
Compliant Mechanisms: Design of Flexure Hinges
,
CRC Press
,
Boca Raton
.
28.
Banks
,
H. T.
, and
Inman
,
D. J.
,
1991
, “
On Damping Mechanisms in Beams
,”
ASME J. Appl. Mech.
,
58
(
3
), pp.
716
723
.
29.
Measurement Specialties, I.
,
2012
,
Piezo Film Sensors Technical Manual
,
Sensor Products Division, Measurement Specialties
,
Norristown, PA
.
30.
Dompierre
,
A.
,
Vengallatore
,
S.
, and
Frechette
,
L. G.
,
2011
, “
Theoretical and Practical Limits of Power Density for Piezoelectric Vibration Energy Harvesters
,”
11th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications
(
PowerMEMS 2011
), Seoul, Korea, Nov. 15–18, pp.
249
252
.
31.
Dubus
,
B.
,
Debus
,
J. C.
,
Decarpigny
,
J. N.
, and
Boucher
,
D.
,
1991
, “
Analysis of Mechanical Limitations of High Power Piezoelectric Transducers Using Finite Element Modelling
,”
Ultrasonics
,
29
(
3
), pp.
201
207
.
32.
Measurement Specialties, I.
,
2010
,
Power Generation Using Piezo Film
,
Measurement Specialties
,
Aliso Viejo, CA
.
33.
Marines
,
I.
,
Bin
,
X.
, and
Bathias
,
C.
,
2003
, “
An Understanding of Very High Cycle Fatigue of Metals
,”
Int. J. Fatigue
,
25
(
9–11
), pp.
1101
1107
.
You do not currently have access to this content.