In this paper, we investigate the vibration characteristics of a Z-shaped beam with variable folding angles which is used to model a folding wing of a morphing aircraft under the condition of a fixed structure. The governing equations of motions for the Z-shaped beam are formulated. For a specific set of material and geometrical parameters, the first three in-plane and the first two out-of-plane linear frequencies of the Z-shaped beam are theoretically calculated, and validated by the experiments and numerical simulations. Additionally, the theoretical mode shapes at a fixed folding angle are compared to the experimental results and the finite element simulations. The theoretical results agree well with numerical simulations and experiments. The results obtained in this paper are helpful for designing and controlling Z-shaped beam structures, and can also be used as a basis to study the nonlinear dynamics of these structures.

References

1.
Love
,
M. H.
,
Zink
,
P. S.
,
Stroud
,
R. L.
,
Bye
,
D. R.
,
Rizk
,
S.
, and
White
,
D.
,
2007
, “
Demonstration of Morphing Technology Through Ground and Wind Tunnel Tests
,”
AIAA
Paper No. 2007-1729.
2.
Snyder
,
M. P.
,
Sanders
,
B.
,
Eastep
,
F. E.
, and
Frank
,
G. J.
,
2009
, “
Vibration and Flutter Characteristics of a Folding Wing
,”
J. Aircr.
,
46
(
3
), pp.
791
799
.
3.
Wang
,
I.
, and
Dowell
,
E. H.
,
2011
, “
Structural Dynamics Model of Multisegmented Folding Wings: Theory and Experiment
,”
J. Aircr.
,
48
(
6
), pp.
2149
2160
.
4.
Attar
,
P. J.
,
Tang
,
D.
, and
Dowell
,
E. H.
,
2010
, “
Nonlinear Aeroelastic Study for Folding Wing Structures
,”
AIAA J.
,
48
(
10
), pp.
2187
2195
.
5.
Zhao
,
Y.
, and
Hu
,
H. Y.
,
2012
, “
Parameterized Aeroelastic Modeling and Flutter Analysis for a Folding Wing
,”
J. Sound Vib.
,
331
(
2
), pp.
308
324
.
6.
Zhao
,
Y.
, and
Hu
,
H. Y.
,
2013
, “
Prediction of Transient Responses of a Folding Wing During the Morphing Process
,”
Aerosp. Sci. Technol.
,
24
(
1
), pp.
89
94
.
7.
Zhang
,
W.
,
Sun
,
L.
,
Yang
,
X. D.
, and
Jia
,
P.
,
2013
, “
Nonlinear Dynamic Behaviors of a Deploying-and-Retreating Wing With Varying Velocity
,”
J. Sound Vib.
,
332
(
25
), pp.
6785
6797
.
8.
Zhang
,
W.
,
Lu
,
S. F.
, and
Yang
,
X. D.
,
2014
, “
Analysis on Nonlinear Dynamics of a Deploying Composite Laminated Cantilever Plate
,”
Nonlinear Dyn.
,
76
(
1
), pp.
69
93
.
9.
Erturk
,
A.
,
Renno
,
J. M.
, and
Inman
,
D. J.
,
2009
, “
Modeling of Piezoelectric Energy Harvesting From an L-Shaped Beam-Mass Structure With an Application to UAV's
,”
J. Intell. Mater. Syst. Struct.
,
20
(
5
), pp.
529
544
.
10.
Guan
,
C.
, and
Zhu
,
Y.
,
2010
, “
An Electrothermal Microactuator With Z-Shaped Beams
,”
J. Micromech. Microeng.
,
20
(
8
), p.
085014
.
11.
Nayfeh
,
A. H.
,
Balachandran
,
B.
,
Colbert
,
M. A.
, and
Nayfeh
,
M. A.
,
1989
, “
An Experimental Investigation of Complicated Responses of a Two-Degree-of-Freedom Structure
,”
ASME J. Appl. Mech.
,
56
(
4
), pp.
960
967
.
12.
Balachandran
,
B.
, and
Nayfeh
,
A. H.
,
1990
, “
Nonlinear Motions of Beam-Mass Structure
,”
Nonlinear Dyn.
,
1
(
1
), pp.
39
61
.
13.
Cao
,
D. X.
,
Zhang
,
W.
, and
Yao
,
M. H.
,
2010
, “
Analytical and Experimental Studies on Nonlinear Characteristics of an L-Shape Beam Structure
,”
Acta Mech. Sin.
,
26
(
6
), pp.
967
976
.
14.
Wang
,
F.
, and
Bajaj
,
A. K.
,
2010
, “
Nonlinear Dynamics of a Three-Beam Structure With Attached Mass and Three-Mode Interactions
,”
Nonlinear Dyn.
,
62
(
1–2
), pp.
461
484
.
15.
Onozato
,
N.
,
Nagai
,
K. I.
,
Maruyama
,
S.
, and
Yamaguchi
,
T.
,
2012
, “
Chaotic Vibrations of a Post-Buckled L-Shaped Beam With an Axial Constraint
,”
Nonlinear Dyn.
,
67
(
4
), pp.
2363
2379
.
16.
Ho
,
C. H.
,
Scott
,
R. A.
, and
Eisley
,
J. G.
,
1975
, “
Non-Planar, Non-Linear Oscillations of a Beam-I. Forced Motions
,”
Int. J. Non-Linear Mech.
,
10
(
2
), pp.
113
127
.
17.
Crespo da Silva
,
M. R. M.
, and
Glynn
,
C. C.
,
1978
, “
Nonlinear Flexural-Flexural-Torsional Dynamics of Inextensional Beams. I. Equations of Motion
,”
J. Struct. Mech.
,
6
(
4
), pp.
437
448
.
18.
Crespo da Silva
,
M. R. M.
, and
Glynn
,
C. C.
,
1978
, “
Nonlinear Flexural-Flexural-Torsional Dynamics of Inextensional Beams. II. Forced Motions
,”
J. Struct. Mech.
,
6
(
4
), pp.
449
461
.
19.
Arafat
,
H. N.
,
Nayfeh
,
A. H.
, and
Chin
,
C. M.
,
1998
, “
Nonlinear Nonplanar Dynamics of Parametrically Excited Cantilever Beams
,”
Nonlinear Dyn.
,
15
(
1
), pp.
31
61
.
20.
Zhang
,
W.
,
2005
, “
Chaotic Motion and Its Control for Nonlinear Nonplanar Oscillations of a Parametrically Excited Cantilever Beam
,”
Chaos, Solitons Fractals
,
26
(
3
), pp.
731
745
.
21.
Georgiades
,
F.
,
Warminski
,
J.
, and
Cartmell
,
M. P.
,
2013
, “
Towards Linear Modal Analysis for an L-Shaped Beam: Equations of Motion
,”
Mech. Res. Commun.
,
47
, pp.
50
60
.
22.
Georgiades
,
F.
,
Warminski
,
J.
, and
Cartmell
,
M.
,
2013
, “
Linear Modal Analysis of L-Shaped Beam Structures
,”
Mech. Syst. Signal Process.
,
38
(
2
), pp.
312
332
.
23.
Crespo da Silva
,
M. R. M.
,
1991
, “
Equations for Nonlinear Analysis of 3D Motions of Beams
,”
ASME Appl. Mech. Rev.
,
44
(
11S
), pp.
S51
S59
.
You do not currently have access to this content.