We propose two methods to broaden the operation bandwidth of a nonlinear pinned–pinned piezoelectric bimorph power harvester. The energy-scavenging structure consists of a properly poled and electroded flexible bimorph with a metallic layer in the middle, and is subjected to flexural vibration. Nonlinear effects at large deformations near resonance are considered by taking the in-plane extension of the bimorph into account. The resulting output powers are multivalued and exhibit jump phenomena. Two methods to broaden the operation bandwidth are proposed: The first method is to extend the operation frequency to the left single-valued region through optimal design. The second method is to excite optimal initial conditions with a voltage source. Larger output powers in the multivalued region of the nonlinear harvester are obtained. Hence, the operation bandwidth is broadened from the left single-valued region to the whole multivalued region.

References

1.
Roundy
,
S.
,
Wright
,
P. K.
, and
Rabaey
,
J.
,
2003
, “
A Study of low Level Vibrations as a Power Source for Wireless Sensor Nodes
,”
Comput. Commun.
,
26
(
11
), pp.
1131
1144
.
2.
Yang
,
J. S.
,
Chen
,
Z. G.
,
Hu
,
Y. T.
,
Jiang
,
S. N.
, and
Guo
,
S. H.
,
2007
, “
Weakly Nonlinear Behavior of a Plate Thickness-Mode Piezoelectric Transformer
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
54
(
4
), pp.
877
881
.
3.
Hu
,
Y. T.
,
Xue
,
H.
,
Hu
,
T.
, and
Hu
,
H. P.
,
2008
, “
Nonlinear Interface Between the Piezoelectric Harvesting Structure and the Modulating Circuit of an Energy Harvester With a Real Storage Battery
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
55
(
1
), pp.
148
160
.
4.
Liang
,
J.
, and
Liao
,
W. H.
,
2011
, “
Energy Flow in Piezoelectric Energy Harvesting Systems
,”
Smart Mater. Struct.
,
20
(
1
), p.
015005
.
5.
Hu
,
Y. T.
,
Xue
,
H.
,
Yang
,
J. S.
, and
Jiang
,
Q.
,
2006
, “
Nonlinear Behavior of a Piezoelectric Power Harvester Near Resonance
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
53
(
7
), pp.
1387
1391
.
6.
Xue
,
H.
, and
Hu
,
H. P.
,
2008
, “
Nonlinear Characteristics of a Circular Plate Piezoelectric Harvester With Relatively Large Deflection Near Resonance
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
55
(
9
), pp.
2092
2096
.
7.
Wang
,
H. R.
,
Xie
,
J. M.
,
Hu
,
Y. T.
, and
Wang
,
J.
,
2014
, “
Nonlinear Characteristics of Circular-Cylinder Piezoelectric Power Harvester Near Resonance Based on Flow-Induced Flexural Vibration Mode
,”
Appl. Math. Mech.
,
35
(
2
), pp.
229
236
.
8.
Wang
,
H. R.
,
Xie
,
X.
,
Hu
,
Y. T.
, and
Wang
,
J.
,
2013
, “
Weakly Nonlinear Characteristics of a Three-Layer Circular Piezoelectric Plate-Like Power Harvester Near Resonance
,”
J. Mech.
,
30
(
1
), pp.
97
102
.
9.
Ramlan
,
R.
,
Brennan
,
M.
,
Mace
,
B.
, and
Kovacic
,
I.
,
2010
, “
Potential Benefits of a Non-Linear Stiffness in an Energy Harvesting Device
,”
Nonlinear Dyn.
,
59
(
4
), pp.
545
558
.
10.
Wu
,
H.
,
Tang
,
L.
,
Yang
,
Y.
, and
Soh
,
C. K.
,
2014
, “
Development of a Broadband Nonlinear Two-Degree-of-Freedom Piezoelectric Energy Harvester
,”
J. Intell. Mater. Syst. Struct.
,
25
(
14
), pp.
1875
1889
.
11.
Barton
,
D. A. W.
,
Burrow
,
S. G.
, and
Clare
,
L. R.
,
2010
, “
Energy Harvesting From Vibrations With a Nonlinear Oscillator
,”
ASME J., Vib. Acoust.
,
132
(
2
), p.
021009
.
12.
Leadenham
,
S.
, and
Erturk
,
A.
,
2015
, “
Nonlinear M-Shaped Broadband Piezoelectric Energy Harvester for Very Low Base Accelerations: Primary and Secondary Resonances
,”
Smart Mater. Struct.
,
24
(
5
), p.
055021
.
13.
Yang
,
Z.
,
Zhu
,
Y.
, and
Zu
,
J.
,
2015
, “
Theoretical and Experimental Investigation of a Nonlinear Compressive-Mode Energy Harvester With High Power Output Under Weak Excitations
,”
Smart Mater. Struct.
,
24
(
2
), p.
025028
.
14.
Stanton
,
S. C.
,
McGehee
,
C. C.
, and
Mann
,
B. P.
,
2010
, “
Nonlinear Dynamics for Broadband Energy Harvesting: Investigation of a Bistable Piezoelectric Inertial Generator
,”
Physica D
,
239
(
10
), pp.
640
653
.
15.
Harne
,
R.
, and
Wang
,
K.
,
2013
, “
A Review of the Recent Research on Vibration Energy Harvesting Via Bistable Systems
,”
Smart Mater. Struct.
,
22
(
2
), p.
023001
.
16.
Pellegrini
,
S. P.
,
Tolou
,
N.
,
Schenk
,
M.
, and
Herder
,
J. L.
,
2012
, “
Bistable Vibration Energy Harvesters: A Review
,”
J. Intell. Mater. Syst. Struct.
,
24
(
11
), pp.
1303
1312
.
17.
Masana
,
R.
, and
Daqaq
,
M. F.
,
2012
, “
Energy Harvesting in the Super-Harmonic Frequency Region of a Twin-Well Oscillator
,”
J. Appl. Phys.
,
111
(
4
), p.
044501
.
18.
Hu
,
H. P.
,
Xue
,
H.
, and
Hu
,
Y. T.
,
2007
, “
A Spiral-Shaped Harvester With an Improved Harvesting Element and an Adaptive Storage Circuit
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
54
(
6
), pp.
1177
1187
.
19.
Jiang
,
S. N.
, and
Hu
,
Y. T.
,
2007
, “
Analysis of a Piezoelectric Bimorph Plate With a Central-Attached Mass as an Energy Harvester
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
54
(
7
), pp.
1463
469
.
20.
Wang
,
H. R.
,
Hu
,
H. P.
,
Yang
,
J. S.
, and
Hu
,
Y. T.
,
2013
, “
Spiral Piezoelectric Transducer in Torsional Motion as Low-Frequency Power Harvester
,”
Appl. Math. Mech.
,
34
(
5
), pp.
589
596
.
21.
Wang
,
Y. J.
,
Lian
,
Z. Y.
,
Wang
,
J.
, and
Hu
,
H. P.
,
2013
, “
Analysis of a Piezoelectric Power Harvester With Adjustable Frequency by Precise Electric Field Method
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
60
(
10
), pp.
2154
2161
.
22.
Reddy
,
J. N.
,
2004
,
Mechanics of Laminated Composite Plates and Shells: Theory and Analysis
,
CRC Press
, London.
23.
Eisley
,
J. G.
,
1964
, “
Nonlinear Vibration of Beams and Rectangular Plates
,”
Z. Angew. Math. Phys.
,
15
(
2
), pp.
167
175
.
24.
Pirbodaghi
,
T.
,
Fesanghary
,
M.
, and
Ahmadian
,
M.
,
2011
, “
Non-Linear Vibration Analysis of Laminated Composite Plates Resting on Non-Linear Elastic Foundations
,”
J. Franklin Inst. Eng. Appl. Math.
,
348
(
2
), pp.
353
368
.
25.
Xie
,
J. M.
,
Yang
,
J. S.
,
Hu
,
H. P.
,
Hu
,
Y. T.
, and
Chen
,
X. D.
,
2012
, “
A Piezoelectric Energy Harvester Based on Flow-Induced Flexural Vibration of a Circular Cylinder
,”
J. Intell. Mater. Syst. Struct.
,
23
(
2
), pp.
135
139
.
26.
Yang
,
J. S.
, and
Fang
,
H. Y.
,
2002
, “
Analysis of a Rotating Elastic Beam With Piezoelectric Films as an Angular Rate Sensor
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
49
(
6
), pp.
798
804
.
27.
Meitzler
,
A.
,
Tiersten
,
H.
,
Warner
,
A.
,
Berlincourt
,
D.
,
Coquin
,
G.
, and
Welsh
,
F.
, III
,
1988
, “
IEEE Standard on Piezoelectricity
,” American National Standards Institute, New York.
28.
Auld
,
B. A.
,
1973
,
Acoustic Fields and Waves in Solids
,
Wiley
,
New York
.
You do not currently have access to this content.