Arch microbeams have been utilized and proposed for many uses over the past few years due to their large tunability and bistability. However, recent experimental data have shown different mechanical behaviors of arches when subjected to axial loads, i.e., their stiffness may increase or decrease with applied axial loads. This paper aims to investigate in depth, the influence of the competing effects of initial rise and axial loads on the mechanical behavior of micromachined arches; mainly their static deflection and resonant frequencies. Based on analytical solutions, the static response and eigenvalue problems are analyzed for various values of initial rises and axial loads. Universal curves showing the variation of the first three resonance frequencies of the arch are generated for various values of initial rise under both tensile and compressive axial loads. This study shows that increasing the tensile or compressive axial loads for different values of initial rise may lead to either increase in the stiffness of the beam or initial decrease in the stiffness, which later increases as the axial load is increased depending on the dominant effect of the initial rise of the arch and the axial load. The obtained universal curves represent useful design tools to predict the tunability of arches under axial loads for various values of initial rises. The use of the universal curves is demonstrated with an experimental case study. Analytical formulation is developed to predict the point of minimum where the trend of the resonance frequency versus axial loads changes qualitatively due to the competing effects of axial loads and initial curvature.

References

1.
Hwang
,
I. H.
,
Shim
,
Y. S.
, and
Lee
,
J. H.
,
2003
, “
Modeling and Experimental Characterization of the Chevron-Type Bi-Stable Microactuator
,”
J. Micromech. Microeng.
,
13
(
6
), p.
948
.
2.
Roundy
,
S.
, and
Wright
,
P. K.
,
2004
, “
A Piezoelectric Vibration Based Generator for Wireless Electronics
,”
Smart Mater. Struct.
,
13
(
5
), pp.
1131
1142
.
3.
Addessi
,
D.
,
Lacarbonara
,
W.
, and
Paolone
,
A.
,
2005
, “
Free In-Plane Vibrations of Highly Buckled Beams Carrying a Lumped Mass
,”
Acta Mech.
,
180
(1), pp.
133
156
.
4.
Leland
,
E. S.
, and
Wright
,
P. K.
,
2006
, “
Resonance Tuning of Piezoelectric Vibration Energy Scavenging Generators Using Compressive Axial Preload
,”
Smart Mater. Struct.
,
15
(
5
), pp.
1413
1420
.
5.
Charlot
,
B.
,
Sun
,
W.
,
Yamashita
,
K.
,
Fujita
,
H.
, and
Toshiyoshi
,
H.
,
2008
, “
Bistable Nanowire for Micromechanical Memory
,”
J. Micromech. Microeng.
,
18
(
4
), p.
045005
.
6.
Guerra
,
D. N.
,
Imboden
,
M.
, and
Mohanty
,
P.
,
2008
, “
Electrostatically Actuated Silicon-Based Nanomechanical Switch at Room Temperature
,”
Appl. Phys. Lett.
,
93
(
3
), p.
033515
.
7.
Nayfeh
,
A. H.
,
Ouakad
,
H. M.
,
Najar
,
F.
,
Choura
,
S.
, and
Abdel-Rahman
,
E. M.
,
2009
, “
Nonlinear Dynamics of a Resonant Gas Sensor
,”
Nonlinear Dyn.
,
59
(4), pp.
607
618
.
8.
Noh
,
H.
,
Shim
,
S. B.
,
Jung
,
M.
,
Khim
,
Z. G.
, and
Kim
,
J.
,
2010
, “
A Mechanical Memory With a DC Modulation of Nonlinear Resonance
,”
Appl. Phys. Lett.
,
97
(
3
), p.
033116
.
9.
Yao
,
A.
, and
Hikihara
,
T.
,
2014
, “
Logic-Memory Device of a Mechanical Resonator
,”
Appl. Phys. Lett.
,
105
(
12
), p.
123104
.
10.
Qiu
,
J.
,
Lang
,
J. H.
, and
Slocum
,
A. H.
,
2004
, “
A Curved-Beam Bistable Mechanism
,”
J. Microelectromech. Syst.
,
13
(
2
), pp.
137
146
.
11.
Sulfridge
,
M.
,
Saif
,
T.
,
Miller
,
N.
, and
Meinhart
,
M.
,
2004
, “
Nonlinear Dynamic Study of a Bistable MEMS: Model and Experiment
,”
J. Microelectromech. Syst.
,
13
(
5
), pp.
725
731
.
12.
Krylov
,
S.
,
Ilic
,
B. R.
,
Schreiber
,
D.
,
Seretensky
,
S.
, and
Craighead
,
H.
,
2008
, “
The Pull-In Behavior of Electrostatically Actuated Bistable Microstructures
,”
J. Micromech. Microeng.
,
18
(
5
), p.
055026
.
13.
Ramini
,
A. H.
,
Hennawi
,
Q. M.
, and
Younis
,
M. I.
,
2016
, “
Theoretical and Experimental Investigation of the Nonlinear Behavior of an Electrostatically Actuated In-Plane MEMS Arch
,”
J. Microelectromech. Syst.
,
25
(
3
), pp.
570
578
.
14.
Younis
,
M. I.
,
Ouakad
,
H. M.
,
Alsaleem
,
F. M.
,
Miles
,
R.
, and
Cui
,
W.
,
2010
, “
Nonlinear Dynamics of MEMS Arches Under Harmonic Electrostatic Actuation
,”
J. Microelectromech. Syst.
,
19
(
3
), pp.
647
656
.
15.
Charlot
,
B.
,
Sun
,
W.
,
Yamashita
,
K.
,
Fujita
,
H.
, and
Toshiyoshi
,
H.
,
2008
, “
In-Plane Bistable Nanowire for Memory Devices
,”
Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS
(
DTIP
), Nice, France, Apr. 9–11, pp.
254
258
.
16.
Roodenburg
,
D.
,
Spronck
,
J. W.
,
van der Zant
,
H. S. J.
, and
Venstra
,
W. J.
,
2009
, “
Buckling Beam Micromechanical Memory With On-Chip Readout
,”
Appl. Phys. Lett.
,
94
(
18
), p.
183501
.
17.
Hafiz
,
M. A.
,
Kosuru
,
L.
, and
Younis
,
M. I.
,
2016
, “
Microelectromechanical Reprogrammable Logic Device
,”
Nat. Commun.
,
7
, p.
11137
.
18.
Mestrom
,
R. M. C.
,
Fey
,
R. H. B.
,
Phan
,
K. L.
, and
Nijmeijer
,
H.
,
2010
, “
Simulations and Experiments of Hardening and Softening Resonances in a Clamped–Clamped Beam MEMS Resonator
,”
Sens. Actuators A
,
162
(
2
), pp.
225
234
.
19.
Younesian
,
D.
,
Sadri
,
M.
, and
Esmailzadeh
,
E.
,
2014
, “
Primary and Secondary Resonance Analyses of Clamped–Clamped Micro-Beams
,”
Nonlinear Dyn.
,
76
(
4
), pp.
1867
1884
.
20.
Hajjaj
,
A. Z.
,
Ramini
,
A.
, and
Younis
,
M. I.
,
2015
, “
Experimental and Analytical Study of Highly Tunable Electrostatically Actuated Resonant Beams
,”
J. Micromech. Microeng.
,
25
(
12
), p.
125015
.
21.
Medina
,
L.
,
Gilat
,
R.
, and
Krylov
,
S.
,
2014
, “
Symmetry Breaking in an Initially Curved Pre-Stressed Micro Beam Loaded by a Distributed Electrostatic Force
,”
Int. J. Solids Struct.
,
51
, pp.
2047
2061
.
22.
Bokaian
,
A.
,
1988
, “
Natural Frequencies of Beams Under Compressive Axial Loads
,”
J. Sound Vib.
,
126
(
1
), pp.
49
65
.
23.
Addessi
,
D.
,
Lacarbonara
,
W.
, and
Paolone
,
A.
,
2004
, “
Linear Vibrations of Planar Prestressed Elastica Arches
,”
AIAA
Paper No. 2004-2026.
24.
Elata
,
D.
, and
Abu-Salih
,
S.
,
2005
, “
Analysis of a Novel Method for Measuring Residual Stress in Micro-Systems
,”
J. Micromech. Microeng.
,
15
(
5
), pp.
921
927
.
25.
Li
,
C.
,
Lim
,
C. W.
,
Yu
,
J. L.
, and
Zeng
,
Q. C.
,
2011
, “
Analytical Solutions for Vibration of Simply Supported Nonlocal Nanobeams With an Axial Force
,”
Int. J. Struct. Stab. Dyn.
,
11
(
02
), pp.
257
271
.
26.
Alkharabsheh
,
S. A.
, and
Younis
,
M. I.
,
2013
, “
Statics and Dynamics of MEMS Arches Under Axial Forces
,”
ASME J. Vib. Acoust.
,
135
(
2
), p.
021007
.
27.
Nayfeh
,
A. H.
,
Kreider
,
W.
, and
Anderson
,
T. J.
,
1995
, “
Investigation of Natural Frequencies and Mode Shapes of Buckled Beams
,”
AIAA J.
,
33
(6), pp.
1121
1126
.
28.
Humphreys
,
J. S.
,
1966
, “
On Dynamic Snap Buckling of Shallow Arches
,”
AIAA J.
,
4
(
5
), pp.
878
886
.
29.
Lacarbonara
,
W.
,
Nayfeh
,
A. H.
, and
Kreider
,
W.
,
1998
, “
Experimental Validation of Reduction Methods for Nonlinear Vibrations of Distributed-Parameter Systems: Analysis of a Buckled Beam
,”
Nonlinear Dyn.
,
17
(
2
), pp.
95
117
.
30.
Rega
,
G.
,
Lacarbonara
,
W.
,
Nayfeh
,
A.
, and
Chin
,
C.
,
1999
, “
Multiple Resonances in Suspended Cables: Direct Versus Reduced-Order Models
,”
Int. J. Non-Linear Mech.
,
34
(
5
), pp.
901
924
.
31.
Pi
,
Y. L.
,
Bradford
,
M.
, and
Uy
,
B.
,
2002
, “
In-Plane Stability of Arches
,”
Int. J. Solids Struct.
,
39
(
1
), pp.
105
125
.
32.
Nayfeh
,
A. H.
, and
Emam
,
S. A.
,
2008
, “
Exact Solution and Stability of Postbuckling Configurations of Beams
,”
Nonlinear Dyn.
,
54
(
4
), pp.
395
408
.
33.
Krylov
,
S.
, and
Dick
,
N.
,
2010
, “
Dynamic Stability of Electrostatically Actuated Initially Curved Shallow Micro Beams
,”
Continuum Mech. Thermodyn.
,
22
(6), pp.
445
468
.
34.
Ouakad
,
H. M.
, and
Younis
,
M. I.
,
2010
, “
The Dynamic Behavior of MEMS Arch Resonators Actuated Electrically
,”
Int. J. Non-Linear Mech.
,
45
(
7
), pp.
704
713
.
35.
Ruzziconi
,
L.
,
Younis
,
M. I.
, and
Lenci
,
S.
,
2012
, “
An Efficient Reduced-Order Model to Investigate the Behavior of an Imperfect Microbeam Under Axial Load and Electric Excitation
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
1
), p.
011014
.
36.
Medina
,
L.
,
Gilat
,
R.
,
Ilic
,
B. R.
, and
Krylov
,
S.
,
2016
, “
Experimental Dynamic Trapping of Electrostatically Actuated Bistable Micro-Beams
,”
Appl. Phys. Lett.
,
108
(7), p. 073503.
37.
Medina
,
L.
,
Gilat
,
R.
, and
Krylov
,
S.
,
2016
, “
Bouncing and Dynamic Trapping of a Bistable Curved Micro Beam Actuated by a Suddenly Applied Electrostatic Force
,”
Commun. Nonlinear Sci. Numer. Simul.
,
36
, pp.
273
284
.
38.
Medina
,
L.
,
Gilat
,
R.
, and
Krylov
,
S.
,
2017
, “
Latching in Bistable Electrostatically Actuated Curved Micro Beams
,”
Int. J. Eng. Sci.
,
110
, pp.
15
34
.
39.
Lacarbonara
,
W.
,
1997
, “
A Theoretical and Experimental Investigation of Nonlinear Vibrations of Buckled Beams
,”
Master's thesis
, Virginia Polytechnic Institute and State University, Blacksburg, VA.
40.
Younis
,
M. I.
,
2011
,
MEMS Linear and Nonlinear Statics and Dynamics
, Vol.
20
,
Springer Science & Business Media
, New York.
41.
Krakover
,
N.
,
Ilic
,
B. R.
, and
Krylov
,
S.
,
2016
, “
Displacement Sensing Based on Resonant Frequency Monitoring of Electrostatically Actuated Curved Micro Beams
,”
J. Micromech. Microeng.
,
26
(
11
), p.
115006
.
42.
Ruzziconi
,
L.
,
Lenci
,
S.
, and
Younis
,
M. I.
,
2013
, “
An Imperfect Microbeam Under an Axial Load and Electric Excitation: Nonlinear Phenomena and Dynamical Integrity
,”
Int. J. Bifurcation Chaos
,
23
(
02
), p.
1350026
.
43.
Bataineh
,
A. M.
, and
Younis
,
M. I.
,
2014
, “
Dynamics of an Imperfect Microbeam Considering Its Exact Shape
,”
ASME
Paper No. DETC2014-34917.
44.
Hajjaj
,
A. Z.
,
Ramini
,
A.
,
Alcheikh
,
N.
, and
Younis
,
M. I.
,
2017
, “
Electrothermally Tunable Arch Resonator
,”
J. Microelectromech. Syst.
,
PP
(99), pp.
1
9
.
You do not currently have access to this content.