Inspired by the phenomenon of localized response intensification in wideband random vibration, a novel procedure is proposed to determine the optimal locations of piezoelectric patch attaching on wideband random point-driven beam for vibration energy harvesting application. The optimization objective is to maximize the mean output voltage, and the optimal locations lie on the vicinities of the excited point and its symmetric point. The optimal locations keep invariable regardless of typical symmetric boundary conditions (such as the clamped, simply supported, free, and torsional spring supports), the lower and upper cutoff frequencies of the band-limited white noise, and the external damping provided that the excited point is not too close to boundaries and the bandwidth of excitation covers enough modes of primary structure. The robustness of optimal locations is illustrated from an electromechanical coupling model and is qualitatively verified through experimental testing on a random-excited aluminum beam with piezoelectric patches attached on its surface.

References

1.
Beeby
,
S. P.
,
Tudor
,
M. J.
, and
White
,
N. M.
,
2006
, “
Energy Harvesting Vibration Sources for Microsystems Applications
,”
Meas. Sci. Technol.
,
17
(
12
), pp.
R175
R195
.
2.
Mitcheson
,
P. D.
,
Yeatman
,
E. M.
,
Rao
,
G. K.
,
Holmes
,
A. S.
, and
Green
,
T. C.
,
2008
, “
Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices
,”
Proc. IEEE
,
96
(
9
), pp.
1457
1486
.
3.
Stephen
,
N. G.
,
2006
, “
On Energy Harvesting From Ambient Vibration
,”
J. Sound Vib.
,
293
(
1–2
), pp.
409
425
.
4.
Beeby
,
S. P.
,
Torah
,
R. N.
,
Tudor
,
M. J.
,
Glynne-Jones
,
P.
,
O’Donnell
,
T.
,
Saha
,
C. R.
, and
Roy
,
S.
,
2007
, “
A Micro Electromagnetic Generator for Vibration Energy Harvesting
,”
J. Micromech. Microeng.
,
17
(
7
), pp.
1257
1265
.
5.
Guyomar
,
D.
,
Badel
,
A.
,
Lefeuvre
,
E.
, and
Richard
,
C.
,
2005
, “
Toward Energy Harvesting Using Active Materials and Conversion Improvement by Nonlinear Processing
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
,
52
(
4
), pp.
584
595
.
6.
Anton
,
S. R.
, and
Sodano
,
H. A.
,
2007
, “
A Review of Power Harvesting Using Piezoelectric Materials (2003-2006)
,”
Smart Mater. Struct.
,
16
(
3
), pp.
R1
R21
.
7.
Wang
,
Y.
,
Ma
,
T.
,
Yu
,
H. Y.
, and
Jiang
,
H. Q.
,
2013
, “
Random Analysis on Controlled Buckling Structure for Energy Harvesting
,”
Appl. Phys. Lett.
,
102
(
4
), p.
041915
.
8.
Ma
,
T.
,
Wang
,
Y.
,
Tang
,
R.
,
Yu
,
H. Y.
, and
Jiang
,
H. Q.
,
2013
, “
Pre-Patterned ZnO Nano-Ribbons on Soft Substrates for Stretchable Energy Harvesting Applications
,”
J. Appl. Phys.
,
113
(
20
), p.
204503
.
9.
Zhu
,
D.
,
Tudor
,
M. J.
, and
Beeby
,
S. P.
,
2010
, “
Strategies for Increasing the Operating Frequency Range of Vibration Energy Harvesters: A Review
,”
Meas. Sci. Technol.
,
21
(
2
), p.
022001
.
10.
Tang
,
L.
,
Yang
,
Y.
, and
Soh
,
C. K.
,
2010
, “
Toward Broadband Vibration-Based Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
21
(
18
), pp.
1867
1897
.
11.
Barton
,
D. A. W.
,
Burrow
,
S. G.
, and
Clare
,
L. R.
,
2010
, “
Energy Harvesting From Vibrations With a Nonlinear Oscillator
,”
ASME J. Vib. Acoust.
,
132
(
2
), p.
021009
.
12.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2013
, “
A Review of the Recent Research on Vibration Energy Harvesting Via Bistable Systems
,”
Smart Mater. Struct.
,
22
(
2
), p.
023001
.
13.
Pellegrini
,
S. P.
,
Tolou
,
N.
,
Schenk
,
M.
, and
Herder
,
J. L.
,
2013
, “
Bistable Vibration Energy Harvesters: A Review
,”
J. Intell. Mater. Syst. Struct.
,
24
(
11
), pp.
1303
1312
.
14.
Daqaq
,
M. F.
,
2012
, “
On Intentional Introduction of Stiffness Nonlinearities for Energy Harvesting Under White Gaussian Excitations
,”
Nonlinear Dyn.
,
69
(
3
), pp.
1063
1079
.
15.
Daqaq
,
M. F.
,
Masana
,
R.
,
Erturk
,
A.
, and
Quinn
,
D. D.
,
2014
, “
On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040801
.
16.
Quinn
,
D. D.
,
Triplett
,
A. L.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2011
, “
Comparing Linear and Essentially Nonlinear Vibration-Based Energy Harvesting
,”
ASME J. Vib. Acoust.
,
133
(
1
), p.
011001
.
17.
Daqaq
,
M. F.
,
2010
, “
Response of Uni-Modal Duffing-Type Harvesters to Random Forced Excitations
,”
J. Sound Vib.
,
329
(
18
), pp.
3621
3631
.
18.
Daqaq
,
M. F.
,
2011
, “
Transduction of a Bistable Inductive Generator Driven by White and Exponentially Correlated Gaussian Noise
,”
J. Sound Vib.
,
330
(
11
), pp.
2554
2564
.
19.
Zhao
,
S.
, and
Erturk
,
A.
,
2013
, “
Electroelastic Modeling and Experimental Validations of Piezoelectric Energy Harvesting From Broadband Random Vibrations of Cantilevered Bimorphs
,”
Smart Mater. Struct.
,
22
(
1
), p.
015002
.
20.
Aridogan
,
U.
,
Basdogan
,
I.
, and
Erturk
,
A.
,
2014
, “
Analytical Modeling and Experimental Validation of a Structurally Integrated Piezoelectric Energy Harvester on a Thin Plate
,”
Smart Mater. Struct.
,
23
(
4
), p.
045039
.
21.
Erturk
,
A.
, and
Inman
,
D. J.
,
2009
, “
An Experimentally Validated Bimorph Cantilever Model for Piezoelectric Energy Harvesting From Base Excitations
,”
Smart Mater. Struct.
,
18
(
2
), p.
025009
.
22.
Erturk
,
A.
,
Tarazaga
,
P. A.
,
Farmer
,
J. R.
, and
Inman
,
D. J.
,
2009
, “
Effects of Strain Nodes and Electrode Configuration on Piezoelectric Energy Harvesting From Cantilevered Beams
,”
ASME J. Vib. Acoust.
,
131
(
1
), p.
011010
.
23.
Wickenheiser
,
A. M.
,
2013
, “
Model Reduction in Stochastic Vibration Energy Harvesting Using Compressive Sampling
,”
Smart Mater. Struct.
,
22
(
9
), p.
094029
.
24.
Yoon
,
H.
,
Youn
,
B. D.
, and
Kim
,
H. S.
,
2016
, “
Kirchhoff Plate Theory-Based Electromechanically-Coupled Analytical Model Considering Inertia and Stiffness Effects of a Surface-Bonded Piezoelectric Patch
,”
Smart Mater. Struct.
,
25
(
2
), p.
025017
.
25.
Aridogan
,
U.
,
Basdogan
,
I.
, and
Erturk
,
A.
,
2014
, “
Board-Band and Band-Limited Random Vibration Energy Harvesting Using a Piezoelectric Patch on a Thin Plate
,”
Proc. SPIE
,
9057
, p.
905710
.
26.
Lin
,
Y. K.
, and
Cai
,
G. Q.
,
1995
,
Probabilistic Structural Dynamics: Advanced Theory and Application
,
McGraw-Hill
,
New York
.
27.
Crandall
,
S. H.
, and
Wittig
,
L. E.
,
1972
, “
Chladni’s Patterns for Random Vibration of a Plate
,”
Dynamic Response of Structures
,
G.
Herrmann
and
N.
Perrone
, eds.,
Pergamon Press
,
New York
, pp.
55
71
.
28.
Crandall
,
S. H.
,
1977
, “
Structured Response Patterns Due to Wide-Band Random Excitation
,”
Stochastic Problems in Dynamics
,
B. K.
Clarkson
, ed.,
Pitman
,
London
, pp.
366
389
.
29.
Elishakoff
,
I.
,
van Zanten
,
A. T.
, and
Crandall
,
S. H.
,
1979
, “
Wide-Band Random Axisymmetric Vibration of Cylindrical Shells
,”
ASME J. Appl. Mech.
,
46
(
2
), pp.
417
423
.
30.
Crandall
,
S. H.
,
1980
, “
Localization Response Reductions in Wide-Band Random Vibration of Uniform Structures
,”
Ing.-Arch.
,
49
(5–6), pp.
347
359
.
31.
Elishakoff
,
I.
, and
Ducreux
,
B.
,
2014
, “
Dramatic Effect of Cross-Correlations in Random Vibration of Point-Driven Spherically Curved Panel
,”
Arch. Appl. Mech.
,
84
(
4
), pp.
473
490
.
32.
Elishakoff
,
I.
, and
Santoro
,
R.
,
2014
, “
Random Vibration of a Point-Driven Two-Span Beam on an Elastic Foundation
,”
Arch. Appl. Mech.
,
84
(
3
), pp.
355
374
.
33.
Tian
,
Y. P.
,
Jin
,
X. L.
, and
Wang
,
Y.
,
2016
, “
Strengthening Phenomenon-Inspirited Optimum Design of Random Vibration Energy Harvester
,”
J. Zhejiang Univ. (Eng. Sci.)
,
50
(
5
), pp.
934
940
(in Chinese).
34.
Parton
,
V. Z.
, and
Kudryavtsev
,
B. A.
,
1988
,
Electromagnetoelasticity
,
Gordon and Breach Science Publishers
,
New York
.
35.
Mitchell
,
J. A.
, and
Reddy
,
J. N.
,
1995
, “
A Refined Hybrid Plate Theory for Composite Laminates With Piezoelectric Laminae
,”
Int. J. Solids Struct.
,
32
(
16
), pp.
2345
2367
.
36.
Feng
,
X.
,
Yang
,
B.
,
Liu
,
Y.
,
Wang
,
Y.
,
Dagdeviren
,
C.
,
Liu
,
Z.
,
Carlson
,
A.
,
Li
,
J.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2011
, “
Stretchable Ferroelectric Nanoribbons With Wavy Configurations on Elastomeric Substrates
,”
ACS Nano
,
5
(
4
), pp.
3326
3332
.
37.
Wang
,
Y.
,
Feng
,
X.
,
Lu
,
B. W.
, and
Wang
,
G. F.
,
2013
, “
Surface Effects on the Mechanical Behavior of Buckled Thin Film
,”
ASME J. Appl. Mech.
,
80
(
2
), p.
021002
.
38.
Bolotin
,
V. V.
,
1984
,
Random Vibration of Elastic Systems
,
Martinus Nijhoff Publishers
,
Leiden, The Netherlands
.
You do not currently have access to this content.