A flexoelectric cantilever beam actuated by the converse flexoelectric effect is evaluated and its analytical and experimental data are compared in this study. A line-electrode on the top beam surface and a bottom surface electrode are used to generate an electric field gradient in the beam, so that internal stresses can be induced and applied to distributed actuations. The dynamic control effectiveness of the beam is investigated with a mathematical model and is validated by laboratory experiments. Analyses show that the actuation stress induced by the converse flexoelectric effect is in the longitudinal direction and results in a bending control moment to the flexoelectric beam since the stress in the thickness is inhomogeneous. It is found that thinner line-electrode radius and thinner flexoelectric beam lead to larger control effects on the beam. The position of the line-electrode on the top surface of the beam also influences the control effect. When the line-electrode is close to the fixed end, it induces a larger tip displacement than that is close to the free end. Analytical results agree well with laboratory experimental data. This study of flexoelectric actuation and control provides a fundamental understanding of flexoelectric actuation mechanisms.

References

1.
Soedel
,
W.
,
2004
,
Vibrations of Shells and Plates—Revised and Expanded
, 3rd ed.,
Marcel Dekker
,
New York
.
2.
Qatu
,
M.-S. K.
,
2004
,
Vibration of Laminated Shells and Plates
,
Elsevier
,
San Diego, CA
.
3.
Tzou
,
H. S.
, and
Ye
,
R.
,
1994
, “
Piezothermoelasticity and Precision Control of Piezoelectric Systems: Theory and Finite Element Analysis
,”
ASME J. Vib. Acoust.
,
116
(
4
), pp.
489
495
.
4.
Tzou
,
H.
, and
Hollkamp
,
J.
,
1999
, “
Collocated Independent Modal Control With Self-Sensing Orthogonal Piezoelectric Actuators—Theory and Experiment
,”
Smart Mater. Struct.
,
3
(
3
), pp.
277
284
.
5.
Bao
,
Y.
,
Tzou
,
H. S.
, and
Venkayya
,
V. B.
,
1998
, “
Analysis of Non-Linear Piezothermoelastic Laminated Beams With Electric and Temperature Effects
,”
J. Sound Vib.
,
209
(
3
), pp.
505
518
.
6.
Wang
,
D. W.
,
Tzou
,
H. S.
, and
Lee
,
H. J.
,
2004
, “
Control of Nonlinear Electro/Elastic Beam and Plate Systems (Finite Element Formulation and Analysis)
,”
ASME J. Vib. Acoust.
,
126
(
1
), pp.
63
70
.
7.
Tzou
,
H. S.
, and
Ye
,
R.
,
1996
, “
Analysis of Piezoelastic Structures With Laminated Piezoelectric Triangle Shell Elements
,”
AIAA J.
,
34
(
1
), pp.
110
115
.
8.
Bergamini
,
A.
,
Delpero
,
T.
,
De
,
S. L.
,
Di
,
L. L.
,
Ruzzene
,
M.
, and
Ermanni
,
P.
,
2014
, “
Phononic Crystal With Adaptive Connectivity
,”
Adv. Mater.
,
26
(
9
), pp.
1343
1347
.
9.
Tzou
,
H. S.
, and
Gadre
,
M.
,
1989
, “
Theoretical Analysis of a Multi-Layered Thin Shell Coupled With Piezoelectric Shell Actuators for Distributed Vibration Controls
,”
J. Sound Vib.
,
132
(
3
), pp.
433
450
.
10.
Yan
,
X.
,
Huang
,
W.
,
Ryung Kwon
,
S.
,
Yang
,
S.
,
Jiang
,
X.
, and
Yuan
,
F. G.
,
2013
, “
A Sensor for the Direct Measurement of Curvature Based on Flexoelectricity
,”
Smart Mater. Struct.
,
22
(
8
), pp.
1
8
.
11.
Huang
,
W.
,
Kwon
,
S. R.
,
Zhang
,
S.
,
Yuan
,
F. G.
, and
Jiang
,
X.
,
2014
, “
A Trapezoidal Flexoelectric Accelerometer
,”
J. Intell. Mater. Syst. Struct.
,
25
(
3
), pp.
271
277
.
12.
Kwon
,
S. R.
,
Zhang
,
S.
,
Yuan
,
F. G.
, and
Jiang
,
X.
,
2014
, “
A New Type of Microphone Using Flexoelectric Barium Strontium Titanate
,”
Proc. SPIE
,
9062
, pp.
2978
2982
.
13.
Hu
,
S. D.
,
Li
,
H.
, and
Tzou
,
H. S.
,
2015
, “
Distributed Flexoelectric Structural Sensing: Theory and Experiment
,”
J. Sound Vib.
,
348
, pp.
126
136
.
14.
Fu
,
J. Y.
,
Zhu
,
W.
,
Li
,
N.
, and
Smith
,
N. B.
,
2007
, “
Gradient Scaling Phenomenon in Microsize Flexoelectric Piezoelectric Composites
,”
Appl. Phys. Lett.
,
91
(
18
), p.
182910
.
15.
Kogan
,
S. M.
,
1964
, “
Piezoelectric Effect During Inhomogeneous Deformation and Acoustic Scattering of Carriers in Crystals
,”
Sov. Phys.-Solid States
,
5
(
10
), pp.
2069
2070
.
16.
Tagantsev
,
A. K.
,
1986
, “
Piezoelectricity and Flexoelectricity in Crystalline Dielectrics
,”
Phys. Rev. B
,
34
(
8
), pp.
5883
5889
.
17.
Todorov
,
A. T.
,
Petrov
,
A. G.
, and
Fendler
,
J. H.
,
1994
, “
First Observation of the Converse Flexoelectric Effect in Bilayer Lipid Membranes
,”
J. Phys. Chem.
,
98
(
12
), pp.
3076
3079
.
18.
Baskaran
,
S.
,
Thiruvannamalai
,
S.
,
Heo
,
H.
,
Lee
,
H. J.
,
Francis
,
S. M.
,
Ramachandran
,
N.
, and
Fu
,
J. Y.
,
2010
, “
Converse Piezoelectric Responses in Nonpiezoelectric Materials Implemented Via Asymmetric Configurations of Electrodes
,”
J. Appl. Phys.
,
108
(
6
), p.
064114
.
19.
Fu
,
J. Y.
,
Zhu
,
W.
,
Li
,
N.
, and
Cross
,
L. E.
,
2006
, “
Experimental Studies of the Converse Flexoelectric Effect Induced by Inhomogeneous Electric Field in a Barium Strontium Titanate Composition
,”
J. Appl. Phys.
,
100
(
2
), pp.
6394
6401
.
20.
Shen
,
Z.
, and
Chen
,
W.
,
2012
, “
Converse Flexoelectric Effect in Comb Electrode Piezoelectric Microbeam
,”
Phys. Lett. A
,
376
(
19
), pp.
1661
1663
.
21.
Hu
,
S. D.
,
Li
,
H.
, and
Tzou
,
H. S.
,
2011
, “Static Nano-Control of Cantilever Beams Using the Inverse Flexoelectric Effect,”
ASME
Paper No. IMECE2011-65123.
22.
Griffiths
,
D. J.
,
1999
,
Introduction to Electrodynamics
, 3rd ed.,
Prentice Hall
,
Upper Saddle River, NJ
.
23.
Hu
,
S. D.
,
Li
,
H.
, and
Tzou
,
H. S.
,
2014
, “
Comparison of Flexoelectric and Piezoelectric Dynamic Signal Responses on Flexible Rings
,”
J. Intell. Mater. Syst. Struct.
,
25
(
7
), pp.
832
844
.
24.
Tzou
,
H. S.
,
1993
,
Piezoelectric Shells: Distributed Sensing and Control
,
Kluwer Academic Publishers
,
London
.
25.
Tzou
,
H.
,
Deng
,
B.
, and
Huiyu
,
L. I.
,
2017
, “
Flexoelectric Actuation and Vibration Control of Ring Shells
,”
ASME J. Vib. Acoust.
,
139
(
3
), p.
031014
.
You do not currently have access to this content.