Abstract

The stability of rotating machinery is a major challenge for the floating production storage and offloading (FPSO) units such as steam turbines or centrifugal compressors. The use of active magnetic bearings (AMBs) in turbomachines enables high operating speeds, active mechatronic system for the diagnostics, and the control and enables downsizing of the whole installation footprint. In case of strong base motions, the rotor can contact its touchdown bearings (TDBs) which are used as emergency and landing bearings. The aim of this study is to assess the stability of a rotating machine supported on AMBs during severe foundation excitation. The combined effect of unbalance forces, base motion excitation, and contact non-linearity on a rotor–AMB system response is analyzed focusing on the capacity of an augmented proportional-integral-derivative controller to maintain the system stable. An academic scale test rig was used for the experimental investigations. The controller was efficient and able to maintain the system stable during and after the application of the excitation, but the dynamic capacity of the AMBs was largely oversized with respect to the studied system. In order to check the capacity of the AMBs, when they are designed as a function of the rotor weight and expected excitation, numerical simulations were carried out (downsized). A finite element (FE) model was developed to model the on-board rotor–AMB system. Predicted and measured responses due to impulse excitation applied on the foundations were compared. The capacity of the controller to maintain the system stability is then discussed.

References

1.
Schweitzer
,
G.
, and
Maslen
,
E. H.
,
2009
,
Magnetic Bearings, Theory, Design, and Application to Rotating Machinery
,
Springer-Verlag
,
Berlin
, p.
535
.
2.
Swann
,
M. K.
,
Sarichev
,
A. P.
, and
Tsunoda
,
E.
,
2008
, “
A Diffusion Model for Active Magnetic Bearing Systems in Large Turbomachinery
,”
Proceedings of the 11th ISMB
,
Japan
,
Aug. 26–29
, pp.
380
384
.
3.
Masala
,
A.
,
Vannini
,
G.
,
Lacour
,
M.
,
Tassel
,
F. M.
, and
Camatti
,
M.
,
2010
, “
Lateral Rotordynamic Analysis and Testing of a Vertical High Speed 12.5 MW Motorcompressor Levitated by Active Magnetic Bearings
,”
Proceedings of the 12th ISMB
,
China
,
Aug. 22–25
.
4.
ISO
,
2002
,
Mechanical Vibration—Vibration of Rotating Machinery Equipped With Active Magnetic Bearings—Part 1: Vocabulary
,
International Organization for Standardization
,
Geneva, Switzerland
,
Standard ISO 14839-1:2002
.
5.
ISO
,
2004
,
Mechanical Vibration—Vibration of Rotating Machinery Equipped With Active Magnetic Bearings—Part 2: Evaluation of Vibration
,
International Organization for Standardization
,
Geneva, Switzerland
,
Standard ISO 14839-2:2004
.
6.
ISO
,
2006
,
Mechanical Vibration—Vibration of Rotating Machinery Equipped With Active Magnetic Bearings—Part 3: Evaluation of Stability Margin
,
International Organization for Standardization
,
Geneva, Switzerland
, Standard ISO 14839-3:2006.
7.
Maslen
,
E.
,
Hermann
,
P.
,
Scott
,
M.
, and
Humphris
,
R.
,
1989
, “
Practical Limits to the Performance of Magnetic Bearings: Peak Force, Slew Rate and Displacement Sensitivity
,”
ASME J. Tribol.
,
111
(
2
), pp.
331
336
. 10.1115/1.3261918
8.
Defoy
,
B.
,
Alban
,
T.
, and
Mahfoud
,
J.
,
2014
, “
Assessment of the Effectiveness of a Polar Fuzzy Approach for the Control of Centrifugal Compressors
,”
ASME J. Dyn. Syst. Meas. Contr.
,
136
(
4
), p.
041004
. 10.1115/1.4026468
9.
Zhong
,
W.
,
Palazzolo
,
A.
, and
Kang
,
X.
,
2017
, “
Multi-Objective Optimization Design of Nonlinear Magnetic Bearing Rotordynamic System
,”
ASME J. Vib. Acoust.
,
139
(
1
), p.
011011
. 10.1115/1.4034844
10.
Jin
,
C.
,
Guo
,
K.
,
Xu
,
Y.
,
Cui
,
H.
, and
Xu
,
L.
,
2019
, “
Design of Magnetic Bearing Control System Based on Active Disturbance Rejection Theory
,”
ASME J. Vib. Acoust.
,
141
(
1
), p.
011009
. 10.1115/1.4040837
11.
Chen
,
K.-Y.
,
Tung
,
P.-C.
,
Tsai
,
M.-T.
, and
Fan
,
Y.-H.
,
2009
, “
A Self-Tuning Fuzzy PID-Type Controller Design for Unbalance Compensation in an Active Magnetic Bearing
,”
Expert Syst. Appl.
,
36
(
4
), pp.
8560
8570
. 10.1016/j.eswa.2008.10.055
12.
Sahinkaya
,
N. M.
,
Abulrub
,
A.-H. G.
,
Burrows
,
C. R.
, and
Keogh
,
P. S.
,
2010
, “
A Multiobjective Adaptive Controller for Magnetic Bearing Systems
,”
ASME J. Eng. Gas Turbines Power
,
132
(
12
), p.
122503
. 10.1115/1.4001060
13.
Lei
,
S.
, and
Palazzolo
,
A. B.
,
2008
, “
Control of Flexible Rotor Systems With Active Magnetic Bearings
,”
J. Sound Vib.
,
314
(
1–2
), pp.
19
38
. 10.1016/j.jsv.2007.12.028
14.
Das
,
A. S.
,
Dutt
,
J. K.
, and
Ray
,
K.
,
2010
, “
Active Vibration Control of Unbalanced Flexible Rotor-Shaft Systems Parametrically Excited due to Base Motion
,”
Appl. Math. Modell.
,
34
(
9
), pp.
2353
2369
. 10.1016/j.apm.2009.11.002
15.
Zhang
,
Y.
,
Zheng
,
S.
,
Ma
,
C.
,
Chen
,
C.
, and
Wang
,
C.
,
2018
, “
Surge Vibration-Induced Nonlinear Behavior Regulation of Power Amplifier for Magnetic Bearing in a 315 kW Centrifugal Compressor
,”
ASME J. Vib. Acoust.
,
140
(
2
), p.
021003
.10.1115/1.4037849
16.
Cole
,
M. O. T.
,
Keogh
,
P. S.
, and
Burrows
,
C. R.
,
1998
, “
Vibration Control of a Flexible Rotor/Magnetic Bearing System Subject to Direct Forcing and Base Motion Disturbances
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
212
(
7
), pp.
535
546
. 10.1243/0954406981521501
17.
Hawkins
,
L. A.
,
Murphy
,
B.
,
Zierer
,
J.
, and
Hayes
,
R.
,
2003
, “
Shock and Vibration Testing of an AMB Supported Energy Storage Flywheel
,”
JSME Int. J., Ser. C
,
46
(
2
), pp.
429
435
. 10.1299/jsmec.46.429
18.
Cavalca
,
K. L.
,
Cavalcante
,
P. F.
, and
Okabe
,
E. P.
,
2005
, “
An Investigation on the Influence of the Supporting Structure on the Dynamics of the Rotor System
,”
Mech. Syst. Signal Process.
,
19
(
1
), pp.
157
174
. 10.1016/j.ymssp.2004.04.001
19.
Dakel
,
M.
,
Baguet
,
S.
, and
Dufour
,
R.
,
2014
, “
Steady-State Dynamic Behavior of an On-Board Rotor Under Combined Base Motions
,”
J. Vib. Control
,
20
(
15
), pp.
2254
2287
. 10.1177/1077546313483791
20.
Driot
,
N.
,
Lamarque
,
C. H.
, and
Berlioz
,
A.
,
2006
, “
Theoretical and Experimental Analysis of a Base-Excited Rotor
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(
3
), pp.
257
263
. 10.1115/1.2209648
21.
Han
,
Q.
, and
Chu
,
F.
,
2015
, “
Parametric Instability of Flexible Rotor-Bearing System Under Time-Periodic Base Angular Motions
,”
Appl. Math. Modell.
,
39
(
15
), pp.
4511
4522
. 10.1016/j.apm.2014.10.064
22.
Suzuki
,
Y.
,
1998
, “
Acceleration Feedforward Control for Active Magnetic Bearing Systems Excited by Ground Motion
,”
IEE Proc.: Control Theory Appl.
,
145
(
2
), pp.
113
118
. 10.1049/ip-cta:19981751
23.
Matsushita
,
O.
,
Imashima
,
T.
,
Hisanaga
,
Y.
, and
Okubo
,
H.
,
2001
, “
Aseismic Vibration Control of Flexible Rotors Using Active Magnetic Bearing
,”
ASME J. Vib. Acoust.
,
124
(
1
), pp.
49
57
. 10.1115/1.1423633
24.
Kim
,
H. S.
,
Kim
,
H. Y.
,
Lee
,
C. W.
, and
Kang
,
T. H.
,
2003
, “
Stabilization of Active Magnetic Bearing System Subject to Base Motion
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Paper No. 37033
, pp.
2007
2013
.
25.
Kang
,
M. S.
, and
Yoon
,
W. H.
,
2006
, “
Acceleration Feedforward Control in Active Magnetic Bearing System Subject to Base Motion by Filtered-x LMS Algorithm
,”
IEEE Trans. Control Syst. Technol.
,
14
(
1
), pp.
134
140
. 10.1109/TCST.2005.847337
26.
Kang
,
M. S.
,
Lyou
,
J.
, and
Lee
,
J. K.
,
2010
, “
Sliding Mode Control for an Active Magnetic Bearing System Subject to Base Motion
,”
Mechatronics
,
20
(
1
), pp.
171
178
. 10.1016/j.mechatronics.2009.09.010
27.
Keogh
,
P. S.
,
Necip
,
M.
,
Clifford
,
S.
,
Burrows
,
C. R.
, and
Sathujoda
,
P.
,
2006
, “
Wavelet Based Adaptation of h-Infinity Control in Flexible Rotor/Magnetic Bearing Systems
,”
Proceedings of the 7th IFToMM International Conference on Rotor Dynamics
,
Austria, Vienna
,
Sept. 25–28
, pp.
1
6
.
28.
Hawkins
,
L. A.
,
Khatri
,
R. K.
, and
Nambiar
,
K. B.
,
2015
, “
Test Results and Analytical Predictions for mil-std-167 Vibration Testing of a Direct Drive Compressor Supported on Magnetic Bearings
,”
ASME J. Eng. Gas Turbines Power
,
137
(
5
), p.
052507
.10.1115/1.4028684
29.
Hawkins
,
L. A.
,
Wang
,
Z.
, and
Nambiar
,
K.
,
2018
, “
Floating Shock Platform Testing of a Magnetic Bearing Supported Chiller Compressor—Measurements and Simulation Results
,”
Proceedings of ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
,
Paper No. GT2018-77031
, p.
V07BT34A042
.
30.
Jarroux
,
C.
,
2017
, “
Nonlinear Transient Dynamics of On-Board Rotor-AMB Systems
,”
Ph.D. thesis
,
INSA Lyon
,
Lyon
.
31.
Jarroux
,
C.
,
Dufour
,
R.
,
Mahfoud
,
J.
,
Defoy
,
B.
,
Alban
,
T.
, and
Delgado
,
A.
,
2018
, “
Touchdown Bearing Models for Rotor-AMB Systems
,”
J. Sound Vib.
,
440
, pp.
51
69
. 10.1016/j.jsv.2018.09.058
32.
Defoy
,
B.
,
Alban
,
T.
, and
Mahfoud
,
J.
,
2014
, “
Experimental Assessment of a New Fuzzy Controller Applied to a Flexible Rotor Supported by Active Magnetic Bearings
,”
ASME J. Vib. Acoust.
,
136
(
5
), p.
051006
.10.1115/1.4027959
You do not currently have access to this content.