Abstract

Recent attention has been given to acoustic non-reciprocity in metamaterials with nonlinearity. However, the study of asymmetric wave propagation has been limited to mechanical diodes only. Prior works on electromechanical rectifiers or diodes using passive mechanisms are rare in the literature. This problem is investigated here by analytically and numerically studying a combination of nonlinear and linear metamaterials coupled with electromechanical resonators. The nonlinearity of the system stems from the chain in one case and from the electromechanical resonator in another. The method of multiple scales is used to obtain analytical expressions for the dispersion curves. Numerical examples show potential for wider operation range of electromechanical diode, considerable harvested power, and significant frequency shift. The observed frequency shift is demonstrated using spectro-spatial analyses and it is used to construct an electromechanical diode to guide the wave to propagate in one direction only. This only allows signal sensing for waves propagating in one direction and rejects signals in any other direction. The performance of this electromechanical diode is evaluated using the transmission ratio and the asymmetric ratio for a transient input signal. Design guidelines are provided to obtain the best electromechanical diode performance. The presented analyses show high asymmetry ratio for directional-biased wave propagation in the medium-wavelength limit for the case of nonlinear chain. Indeed, the present asymmetric and transmission ratios are higher than those reported in the literature for a mechanical diode. The operation frequencies can also be broadened to the long-wavelength limit frequencies using the resonator nonlinearity.

References

1.
Hussein
,
M. I.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2014
, “
Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook
,”
Appl. Mech. Rev.
,
66
(
4
), p.
040802
.
2.
Bertoldi
,
K.
,
Vitelli
,
V.
,
Christensen
,
J.
, and
van Hecke
,
M.
,
2017
, “
Flexible Mechanical Metamaterials
,”
Nat. Rev. Mater.
,
2
(
11
), p.
17066
.
3.
Sigalas
,
M. M.
, and
Economou
,
E. N.
,
1992
, “
Elastic and Acoustic Wave Band Structure
,”
J. Sound Vib.
,
158
(
2
), pp.
377
382
.
4.
Sigalas
,
M.
, and
Economou
,
E. N.
,
1993
, “
Band Structure of Elastic Waves in Two Dimensional Systems
,”
Solid State Commun.
,
86
(
3
), pp.
141
143
.
5.
Kushwaha
,
M. S.
,
Halevi
,
P.
,
Dobrzynski
,
L.
, and
Djafari-Rouhani
,
B.
,
1993
, “
Acoustic Band Structure of Periodic Elastic Composites
,”
Phys. Rev. Lett.
,
71
(
13
), p.
2022
.
6.
Kushwaha
,
M. S.
,
Halevi
,
P.
,
Martinez
,
G.
,
Dobrzynski
,
L.
, and
Djafari-Rouhani
,
B.
,
1994
, “
Theory of Acoustic Band Structure of Periodic Elastic Composites
,”
Phys. Rev. B
,
49
(
4
), p.
2313
.
7.
Vasseur
,
J.
,
Djafari-Rouhani
,
B.
,
Dobrzynski
,
L.
,
Kushwaha
,
M.
, and
Halevi
,
P.
,
1994
, “
Complete Acoustic Band Gaps in Periodic Fibre Reinforced Composite Materials: The Carbon/Epoxy Composite and Some Metallic Systems
,”
J. Phys.: Condens. Matter
,
6
(
42
), p.
8759
.
8.
Kushwaha
,
M. S.
,
1996
, “
Classical Band Structure of Periodic Elastic Composites
,”
Int. J. Mod. Phys. B
,
10
(
9
), pp.
977
1094
.
9.
Liu
,
Z.
,
Zhang
,
X.
,
Mao
,
Y.
,
Zhu
,
Y.
,
Yang
,
Z.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2000
, “
Locally Resonant Sonic Materials
,”
Science
,
289
(
5485
), pp.
1734
1736
.
10.
Achaoui
,
Y.
,
Laude
,
V.
,
Benchabane
,
S.
, and
Khelif
,
A.
,
2013
, “
Local Resonances in Phononic Crystals and in Random Arrangements of Pillars on a Surface
,”
J. Appl. Phys.
,
114
(
10
), p.
104503
.
11.
Liu
,
L.
, and
Hussein
,
M. I.
,
2012
, “
Wave Motion in Periodic Flexural Beams and Characterization of the Transition Between Bragg Scattering and Local Resonance
,”
ASME J. Appl. Mech.
,
79
(
1
), p.
011003
.
12.
Manimala
,
J. M.
, and
Sun
,
C.
,
2016
, “
Numerical Investigation of Amplitude-Dependent Dynamic Response in Acoustic Metamaterials With Nonlinear Oscillators
,”
J. Acoust. Soc. Am.
,
139
(
6
), pp.
3365
3372
.
13.
Kivshar
,
Y. S.
, and
Flytzanis
,
N.
,
1992
, “
Gap Solitons in Diatomic Lattices
,”
Phys. Rev. A
,
46
(
12
), p.
7972
.
14.
Nadkarni
,
N.
,
Daraio
,
C.
, and
Kochmann
,
D. M.
,
2014
, “
Dynamics of Periodic Mechanical Structures Containing Bistable Elastic Elements: From Elastic to Solitary Wave Propagation
,”
Phys. Rev. E
,
90
(
2
), p.
023204
.
15.
Liang
,
B.
,
Yuan
,
B.
, and
Cheng
,
J.-C.
,
2009
, “
Acoustic Diode: Rectification of Acoustic Energy Flux in One-Dimensional Systems
,”
Phys. Rev. Lett.
,
103
(
10
), p.
104301
.
16.
Bukhari
,
M.
, and
Barry
,
O.
,
2020
, “
Simultaneous Energy Harvesting and Vibration Control in a Nonlinear Metastructure: A Spectro-Spatial Analysis
,”
J. Sound Vib.
,
473
, p.
115215
.
17.
Nayfeh
,
A. H.
,
2011
,
Introduction to Perturbation Techniques
,
John Wiley & Sons
,
New York
.
18.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
2008
,
Nonlinear Oscillations
,
John Wiley & Sons
,
New York
.
19.
Narisetti
,
R. K.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2010
, “
A Perturbation Approach for Predicting Wave Propagation in One-Dimensional Nonlinear Periodic Structures
,”
ASME J. Vib. Acoust.
,
132
(
3
), p.
031001
.
20.
Zhou
,
W.
,
Li
,
X.
,
Wang
,
Y.
,
Chen
,
W.
, and
Huang
,
G.
,
2018
, “
Spectro-Spatial Analysis of Wave Packet Propagation in Nonlinear Acoustic Metamaterials
,”
J. Sound Vib.
,
413
, pp.
250
269
.
21.
Bukhari
,
M.
, and
Barry
,
O.
,
2020
, “
Spectro-Spatial Analyses of a Nonlinear Metamaterial With Multiple Nonlinear Local Resonators
,”
Nonlinear Dyn.
,
99
(
2
), pp.
1539
1560
.
22.
Khajehtourian
,
R.
, and
Hussein
,
M. I.
,
2014
, “
Dispersion Characteristics of a Nonlinear Elastic Metamaterial
,”
AIP Adv.
,
4
(
12
), p.
124308
.
23.
Abedin-Nasab
,
M. H.
,
Bastawrous
,
M. V.
, and
Hussein
,
M. I.
,
2020
, “
Explicit Dispersion Relation for Strongly Nonlinear Flexural Waves Using the Homotopy Analysis Method
,”
Nonlinear Dyn.
,
99
(
1
), pp.
737
752
.
24.
Ganesh
,
R.
, and
Gonella
,
S.
,
2013
, “
Spectro-Spatial Wave Features as Detectors and Classifiers of Nonlinearity in Periodic Chains
,”
Wave Motion
,
50
(
4
), pp.
821
835
.
25.
Bukhari
,
M. A.
, and
Barry
,
O. R.
,
2019
, “
On the Spectro-Spatial Wave Features in Nonlinear Metamaterials With Multiple Local Resonators
,”
ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18
.
26.
Bukhari
,
M.
, and
Barry
,
O.
,
2020
, “Nonlinear Metamaterials with Multiple Local Mechanical Resonators: Analytical and Numerical Analyses,”
New Trends in Nonlinear Dynamics
,
W.
Lacarbonara
,
B.
Balachandran
,
J.
Ma
,
J. A.
Tenreiro Machado
, and
G.
Stepan
, eds.,
Springer
,
Cham
, pp.
13
21
.
27.
Thorp
,
O.
,
Ruzzene
,
M.
, and
Baz
,
A.
,
2001
, “
Attenuation and Localization of Wave Propagation in Rods With Periodic Shunted Piezoelectric Patches
,”
Smart Mater. Struct.
,
10
(
5
), p.
979
.
28.
Airoldi
,
L.
, and
Ruzzene
,
M.
,
2011
, “
Wave Propagation Control in Beams Through Periodic Multi-branch Shunts
,”
J. Intell. Mater. Syst. Struct.
,
22
(
14
), pp.
1567
1579
.
29.
Casadei
,
F.
,
Delpero
,
T.
,
Bergamini
,
A.
,
Ermanni
,
P.
, and
Ruzzene
,
M.
,
2012
, “
Piezoelectric Resonator Arrays for Tunable Acoustic Waveguides and Metamaterials
,”
J. Appl. Phys.
,
112
(
6
), p.
064902
.
30.
Bergamini
,
A.
,
Delpero
,
T.
,
Simoni
,
L. D.
,
Lillo
,
L. D.
,
Ruzzene
,
M.
, and
Ermanni
,
P.
,
2014
, “
Phononic Crystal With Adaptive Connectivity
,”
Adv. Mater.
,
26
(
9
), pp.
1343
1347
.
31.
Zhou
,
W.
,
Wu
,
Y.
, and
Zuo
,
L.
,
2015
, “
Vibration and Wave Propagation Attenuation for Metamaterials by Periodic Piezoelectric Arrays With High-Order Resonant Circuit Shunts
,”
Smart Mater. Struct.
,
24
(
6
), p.
065021
.
32.
Hu
,
G.
,
Tang
,
L.
,
Banerjee
,
A.
, and
Das
,
R.
,
2017
, “
Metastructure With Piezoelectric Element for Simultaneous Vibration Suppression and Energy Harvesting
,”
ASME J. Vib. Acoust.
,
139
(
1
), p.
011012
.
33.
Hu
,
G.
,
Tang
,
L.
, and
Das
,
R.
,
2017
, “
Metamaterial-Inspired Piezoelectric System With Dual Functionalities: Energy Harvesting and Vibration Suppression
,”
Active and Passive Smart Structures and Integrated Systems
,
Portland, OR
,
Apr. 11
,
SPIE, p. 101641X.
34.
Hu
,
G.
,
Tang
,
L.
, and
Das
,
R.
,
2018
, “
Internally Coupled Metamaterial Beam for Simultaneous Vibration Suppression and Low Frequency Energy Harvesting
,”
J. Appl. Phys.
,
123
(
5
), p.
055107
.
35.
Shen
,
L.
,
Wu
,
J. H.
,
Zhang
,
S.
,
Liu
,
Z.
, and
Li
,
J.
,
2015
, “
Low-Frequency Vibration Energy Harvesting Using a Locally Resonant Phononic Crystal Plate With Spiral Beams
,”
Mod. Phys. Lett. B
,
29
(
1
), p.
1450259
.
36.
Li
,
Y.
,
Baker
,
E.
,
Reissman
,
T.
,
Sun
,
C.
, and
Liu
,
W. K.
,
2017
, “
Design of Mechanical Metamaterials for Simultaneous Vibration Isolation and Energy Harvesting
,”
Appl. Phys. Lett.
,
111
(
25
), p.
251903
.
37.
Bukhari
,
M. A.
,
Qian
,
F.
,
Barry
,
O. R.
, and
Zuo
,
L.
,
2020
, “
Effect of Electromechanical Coupling on Locally Resonant Metastructures for Simultaneous Energy Harvesting and Vibration Attenuation Applications
,”
ASME 2020 Dynamic Systems and Control Conference
,
Online
,
Oct. 5
,
American Society of Mechanical Engineers
.
38.
Nassar
,
H.
,
Yousefzadeh
,
B.
,
Fleury
,
R.
,
Ruzzene
,
M.
,
Alù
,
A.
,
Daraio
,
C.
,
Norris
,
A. N.
,
Huang
,
G.
, and
Haberman
,
M. R.
,
2020
, “
Nonreciprocity in Acoustic and Elastic Materials
,”
Nat. Rev. Mater.
,
5
(
9
), pp.
667
685
.
39.
Fleury
,
R.
,
Sounas
,
D. L.
,
Sieck
,
C. F.
,
Haberman
,
M. R.
, and
Alù
,
A.
,
2014
, “
Sound Isolation and Giant Linear Nonreciprocity in a Compact Acoustic Circulator
,”
Science
,
343
(
6170
), pp.
516
519
.
40.
Zangeneh-Nejad
,
F.
, and
Fleury
,
R.
,
2018
, “
Doppler-Based Acoustic Gyrator
,”
Appl. Sci.
,
8
(
7
), p.
1083
.
41.
Nassar
,
H.
,
Chen
,
H.
,
Norris
,
A.
, and
Huang
,
G.
,
2017
, “
Non-reciprocal Flexural Wave Propagation in a Modulated Metabeam
,”
Extreme Mech. Lett.
,
15
, pp.
97
102
.
42.
Nassar
,
H.
,
Chen
,
H.
,
Norris
,
A.
, and
Huang
,
G.
,
2018
, “
Quantization of Band Tilting in Modulated Phononic Crystals
,”
Phys. Rev. B
,
97
(
1
), p.
014305
.
43.
Trainiti
,
G.
, and
Ruzzene
,
M.
,
2016
, “
Non-reciprocal Elastic Wave Propagation in Spatiotemporal Periodic Structures
,”
New J. Phys.
,
18
(
8
), p.
083047
.
44.
Wang
,
Y.
,
Yousefzadeh
,
B.
,
Chen
,
H.
,
Nassar
,
H.
,
Huang
,
G.
, and
Daraio
,
C.
,
2018
, “
Observation of Nonreciprocal Wave Propagation in a Dynamic Phononic Lattice
,”
Phys. Rev. Lett.
,
121
(
19
), p.
194301
.
45.
Chen
,
Y.
,
Li
,
X.
,
Nassar
,
H.
,
Norris
,
A. N.
,
Daraio
,
C.
, and
Huang
,
G.
,
2019
, “
Nonreciprocal Wave Propagation in a Continuum-Based Metamaterial With Space-Time Modulated Resonators
,”
Phys. Rev. Appl.
,
11
(
6
), p.
064052
.
46.
Nassar
,
H.
,
Xu
,
X.
,
Norris
,
A.
, and
Huang
,
G.
,
2017
, “
Modulated Phononic Crystals: Non-reciprocal Wave Propagation and Willis Materials
,”
J. Mech. Phys. Solids
,
101
, pp.
10
29
.
47.
Chen
,
H.
,
Yao
,
L.
,
Nassar
,
H.
, and
Huang
,
G.
,
2019
, “
Mechanical Quantum Hall Effect in Time-Modulated Elastic Materials
,”
Phys. Rev. Appl.
,
11
(
4
), p.
044029
.
48.
Nash
,
L. M.
,
Kleckner
,
D.
,
Read
,
A.
,
Vitelli
,
V.
,
Turner
,
A. M.
, and
Irvine
,
W. T.
,
2015
, “
Topological Mechanics of Gyroscopic Metamaterials
,”
Proc. Natl. Acad. Sci. U.S.A.
,
112
(
47
), pp.
14495
14500
.
49.
Zheng
,
Y.
,
Zhang
,
J.
,
Qu
,
Y.
, and
Meng
,
G.
,
2021
, “
Adaptive Nonreciprocal Wave Attenuation in Linear Piezoelectric Metastructures Shunted With One-Way Electrical Transmission Lines
,”
J. Sound Vib.
,
503
, p.
116113
.
50.
Liang
,
B.
,
Guo
,
X.
,
Tu
,
J.
,
Zhang
,
D.
, and
Cheng
,
J.
,
2010
, “
An Acoustic Rectifier
,”
Nat. Mater.
,
9
(
12
), p.
989
.
51.
Li
,
X.-F.
,
Ni
,
X.
,
Feng
,
L.
,
Lu
,
M.-H.
,
He
,
C.
, and
Chen
,
Y.-F.
,
2011
, “
Tunable Unidirectional Sound Propagation Through a Sonic-Crystal-Based Acoustic Diode
,”
Phys. Rev. Lett.
,
106
(
8
), p.
084301
.
52.
Boechler
,
N.
,
Theocharis
,
G.
, and
Daraio
,
C.
,
2011
, “
Bifurcation-Based Acoustic Switching and Rectification
,”
Nat. Mater.
,
10
(
9
), p.
665
.
53.
Ma
,
C.
,
Parker
,
R. G.
, and
Yellen
,
B. B.
,
2013
, “
Optimization of an Acoustic Rectifier for Uni-directional Wave Propagation in Periodic Mass–Spring Lattices
,”
J. Sound Vib.
,
332
(
20
), pp.
4876
4894
.
54.
Moore
,
K. J.
,
Bunyan
,
J.
,
Tawfick
,
S.
,
Gendelman
,
O. V.
,
Li
,
S.
,
Leamy
,
M.
, and
Vakakis
,
A. F.
,
2018
, “
Nonreciprocity in the Dynamics of Coupled Oscillators With Nonlinearity, Asymmetry, and Scale Hierarchy
,”
Phys. Rev. E
,
97
(
1
), p.
012219
.
55.
Bukhari
,
M.
, and
Barry
,
O.
,
2022
, “
Substantial Frequency Conversion at Long-Wavelength Limit in Metamaterial With Weakly Nonlinear Local Electromechanical Resonators
,” Under review.
56.
Bukhari
,
M. A.
, and
Barry
,
O. R.
,
2020
, “
Electromechanical Diode: Acoustic Non-Reciprocity in Weakly Nonlinear Metamaterial With Electromechanical Resonators
,”
ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Online
,
Aug. 17
,
American Society of Mechanical Engineers
.
57.
Erturk
,
A.
, and
Inman
,
D. J.
,
2011
,
Piezoelectric Energy Harvesting
,
John Wiley & Sons
,
New York
.
58.
Jiao
,
W.
, and
Gonella
,
S.
,
2019
, “
Doubly Nonlinear Waveguides With Self-Switching Functionality Selection Capabilities
,”
Phys. Rev. E
,
99
(
4
), p.
042206
.
59.
Fronk
,
M. D.
, and
Leamy
,
M. J.
,
2017
, “
Higher-Order Dispersion, Stability, and Waveform Invariance in Nonlinear Monoatomic and Diatomic Systems
,”
ASME J. Vib. Acoust.
,
139
(
5
), p.
051003
.
60.
Jiao
,
W.
, and
Gonella
,
S.
,
2021
, “
Wavenumber-Space Band Clipping in Nonlinear Periodic Structures
,”
Proc. R. Soc. A
,
477
(
2251
), p.
20210052
.
61.
Bilal
,
O. R.
,
Foehr
,
A.
, and
Daraio
,
C.
,
2017
, “
Bistable Metamaterial for Switching and Cascading Elastic Vibrations
,”
Proc. Natl. Acad. Sci. U.S.A.
,
114
(
18
), pp.
4603
4606
.
62.
Yasuda
,
H.
,
Buskohl
,
P. R.
,
Gillman
,
A.
,
Murphey
,
T. D.
,
Stepney
,
S.
,
Vaia
,
R. A.
, and
Raney
,
J. R.
,
2021
, “
Mechanical Computing
,”
Nature
,
598
(
7879
), pp.
39
48
.
63.
Mahboob
,
I.
,
Flurin
,
E.
,
Nishiguchi
,
K.
,
Fujiwara
,
A.
, and
Yamaguchi
,
H.
,
2011
, “
Interconnect-free Parallel Logic Circuits in a Single Mechanical Resonator
,”
Nat. Commun.
,
2
(
1
), pp.
1
7
.
64.
Zhang
,
T.
,
Cheng
,
Y.
,
Guo
,
J.-Z.
,
Xu
,
J.-Y.
, and
Liu
,
X.-J.
,
2015
, “
Acoustic Logic Gates and Boolean Operation Based on Self-Collimating Acoustic Beams
,”
Appl. Phys. Lett.
,
106
(
11
), p.
113503
.
65.
Zhu
,
S.
,
Dreyer
,
T.
,
Liebler
,
M.
,
Riedlinger
,
R.
,
Preminger
,
G. M.
, and
Zhong
,
P.
,
2004
, “
Reduction of Tissue Injury in Shock-Wave Lithotripsy by Using an Acoustic Diode
,”
Ultrasound Med. Biol.
,
30
(
5
), pp.
675
682
.
66.
Maldovan
,
M.
,
2013
, “
Sound and Heat Revolutions in Phononics
,”
Nature
,
503
(
7475
), pp.
209
217
.
67.
Li
,
B.
,
2010
, “
Now You Hear Me, Now You Don’t
,”
Nat. Mater.
,
9
(
12
), pp.
962
963
.
68.
Funayama
,
K.
,
Tanaka
,
H.
,
Hirotani
,
J.
,
Shimaoka
,
K.
,
Ohno
,
Y.
, and
Tadokoro
,
Y.
,
2021
, “
Carbon Nanotube-Based Nanomechanical Receiver for Digital Data Transfer
,”
ACS Appl. Nano Mater.
,
4
(
12
), pp.
13041
13047
.
69.
Mohammadi
,
S.
, and
Adibi
,
A.
,
2011
, “
On Chip Complex Signal Processing Devices Using Coupled Phononic Crystal Slab Resonators and Waveguides
,”
AIP Adv.
,
1
(
4
), p.
041903
.
70.
Zega
,
V.
,
Silva
,
P. B.
,
Geers
,
M. G.
, and
Kouznetsova
,
V. G.
,
2020
, “
Experimental Proof of Emergent Subharmonic Attenuation Zones in a Nonlinear Locally Resonant Metamaterial
,”
Sci. Rep.
,
10
(
1
), pp.
1
11
.
You do not currently have access to this content.