Abstract

A simple configuration of an active nonreciprocal gyroscopic metamaterial (NGMM) is presented. In the proposed NGMM system, a one-dimensional acoustic cavity is provided with piezoelectric boundaries acting as a collocated pair of sensors and actuators. The active piezo-boundaries are controlled by a simple control algorithm that synthesizes a virtual gyroscopic control action to impart desirable nonreciprocal characteristics which are tunable both in magnitude and phase. The dynamic model of a prototype of the NGMM cell is experimentally identified in an attempt to provide means for predicting the characteristics of the virtual gyroscopic controller for various control gains during forward and backward propagations. The theoretical predictions are validated experimentally without the need for any physical dynamic controller which was provided, in earlier studies, by using a dummy NGMM cell. Such a simplified arrangement enables the fast execution of the controller with enhanced frequency bandwidth capabilities. The experimental and theoretical characteristics of the NGMM cell are monitored and predicted for different control gains in order to evaluate its behavior for both forward and backward propagations. The obtained experimental results are compared with the theoretical predictions and found to be in close agreement. The presented concepts provide the foundation necessary for the implementation of NGMM that can be employed in more complex 2D and 3D critical structures in order to achieve nonreciprocal behavior in a simple and programmable manner.

References

1.
Fleury
,
R.
,
Sounas
,
D.
,
Haberman
,
M. R.
, and
Alù
,
A.
,
2015
, “
Nonreciprocal Acoustics
,”
Acoust. Today
,
11
(
3
), pp.
14
21
.
2.
Nassar
,
H.
,
Yousefzadeh
,
B.
,
Fleury
,
R.
,
Ruzzene
,
M.
,
Alù
,
A.
,
Daraio
,
C.
,
Norris
,
A. N.
,
Huang
,
G.
, and
Haberman
,
M. R.
,
2020
, “
Nonreciprocity in Acoustic and Elastic Materials
,”
Nat. Rev. Mater.
,
5
(
9
), pp.
1
19
.
3.
Liu
,
C.
,
Du
,
Z. L.
,
Sun
,
Z.
,
Gao
,
H. J.
, and
Guo
,
X.
,
2015
, “
Frequency-Preserved Acoustic Diode Model With High Forward Power-Transmission Rate
,”
Phys. Rev. Appl.
,
3
(
6
), p.
064014
.
4.
Liang
,
B.
,
Yuan
,
B.
, and
Cheng
,
J. C.
,
2009
, “
Acoustic Diode: Rectification of Acoustic Energy Flux in One-Dimensional Systems
,”
Phys. Rev. Lett.
,
103
(
10
), p.
104301
.
5.
Popa
,
B.-I.
, and
Cummer
,
S. A.
,
2014
, “
Non-Reciprocal and Highly Nonlinear Active Acoustic Metamaterials
,”
Nat. Commun.
,
5
(
1
), p.
3398
.
6.
Gu
,
Z.-M.
,
Hu
,
J.
,
Liang
,
B.
,
Zou
,
X.-Y.
, and
Cheng
,
J.-C.
,
2016
, “
Broadband Non-Reciprocal Transmission of Sound With Invariant Frequency
,”
Sci. Rep.
,
6
(
1
), p.
19824
.
7.
Trainiti
,
G.
, and
Ruzzene
,
M.
,
2016
, “
Non-Reciprocal Elastic Wave Propagation in Spatiotemporal Periodic Structures
,”
New J. Phys.
,
18
(
8
), p.
083047
.
8.
Nassar
,
H.
,
Xu
,
X. C.
,
Norris
,
A. N.
, and
Huang
,
G. L.
,
2017
, “
Modulated Phononic Crystals: Nonreciprocal Wave Propagation and Willis Materials
,”
J. Mech. Phys. Solids
,
101
, pp.
10
29
.
9.
Nassar
,
H.
,
Chen
,
H.
,
Norris
,
A. N.
,
Haberman
,
M. R.
, and
Huang
,
G. L.
,
2017
, “
Non-Reciprocal Wave Propagation in Modulated Elastic Metamaterials
,”
Proc. Royal Soc. A
,
473
(
2202
), p.
20170188
.
10.
Attarzadeh
,
M. A.
,
Al Ba’ba’a
,
H.
, and
Nouh
,
M.
,
2018
, “
On the Wave Dispersion and Non-Reciprocal Power Flow in Space-Time Traveling Acoustic Metamaterials
,”
Applied Acous.
,
133
, pp.
210
214
.
11.
Baz
,
A.
,
2018
, “
Active Nonreciprocal Acoustic Metamaterials Using a Switching Controller
,”
J. Acoust. Soc. Am.
,
143
(
3
), pp.
1376
1384
.
12.
Baz
,
A.
,
2019
, “
Nonreciprocal Acoustic Metamaterials With Programmable Virtual Resistors
,”
J. Acoust. Soc. Am.
,
145
(
3
), pp.
1686
1686
.
13.
Petrover
,
K.
, and
Baz
,
A.
,
2020
, “
Finite Element Modeling of One-Dimensional Nonreciprocal Acoustic Metamaterial With Anti-Parallel Diodes
,”
J. Acoust. Soc. Am.
,
148
(
1
), pp.
334
346
.
14.
Baz
,
A.
,
2020
, “
Active Nonreciprocal Metamaterial Using an Eigen-Structure Assignment Control Strategy
,”
J. Acoust. Soc. Am.
,
147
(
4
), pp.
2656
2669
.
15.
Sasmal
,
A.
,
Geib
,
N.
,
Popa
,
B. I.
, and
Grosh
,
K.
,
2020
, “
Broadband Nonreciprocal Linear Acoustics Through a Non-Local Active Metamaterial
,”
New J. Phys.
,
22
(
6
), p.
063010
.
16.
Yi
,
K.
,
Ouisse
,
M.
,
Sadoulet
,
E.
, and
Matten
,
G.
,
2019
, “
Active Metamaterials With Broad Band Controllable Stiffness for Tunable Band Gaps and Non-Reciprocal Wave Propagation
,”
Smart Mater. Struct.
,
28
(
6
), p.
065025
.
17.
Karkar
,
S.
,
De Bono
,
E.
,
Collet
,
M.
,
Matten
,
G.
,
Ouisse
,
M.
, and
Rivet
,
E.
,
2019
, “
Broadband Nonreciprocal Acoustic Propagation Using Programmable Boundary Conditions: From Analytical Modelling to Experimental Implementation
,”
Phys, Rev. Appl.
,
12
(
5
), p.
054033
.
18.
Karkar
,
S.
, and
Collet
,
M.
,
2019
, “
One-Way Sound: An Acoustic Diode Based on Programmable Smart Metamaterials
,”
SPIE Proceedings Volume 10967, Active and Passive Smart Structures and Integrated Systems XIII
,
Denver, CO
,
Mar. 4–7
, p. 109761F.
19.
Fleury
,
R.
,
Sounas
,
D. L.
,
Sieck
,
C. F.
,
Haberman
,
M. R.
, and
Alù
,
A.
,
2014
, “
Sound Isolation and Giant Linear Nonreciprocity in a Compact Acoustic Circulator
,”
Science
,
343
(
6170
), pp.
516
519
.
20.
Attarzadeh
,
M. A.
,
Maleki
,
S.
,
Crassidis
,
J. L.
, and
Nouh
,
M.
,
2019
, “
Non-Reciprocal Wave Phenomena in Energy Self-Reliant Gyric Metamaterials
,”
J. Acoust. Soc. Am.
,
146
(
1
), pp.
789
801
.
21.
Garau
,
M.
,
Carta
,
G.
,
Nieves
,
M.
,
Jones
,
I.
,
Movchan
,
N.
, and
Movchan
,
A.
,
2018
, “
Interfacial Waveforms in Chiral Lattices With Gyroscopic Spinners
,”
Proc. Royal Soc. Ser. A
,
474
(
2215
), pp.
1
20
.
22.
Nash
,
L. M.
,
Kleckner
,
D.
,
Read
,
A.
,
Vitelli
,
V.
,
Turner
,
A. M.
, and
Irvine
,
W. T.
,
2015
, “
Topological Mechanics of Gyroscopic Metamaterials
,”
Proc. Nat. Acad. Sci.
,
112
(
47
), pp.
14495
14500
.
23.
Beli
,
D.
,
Silva
,
P. B.
, and
Arruda
,
J. R. F.
,
2018
, “
Mechanical Circulator for Elastic Waves by Using the Nonreciprocity of Flexible Rotating Rings
,”
Mech. Syst. Signal Process
,
98
, pp.
1077
1096
.
24.
Mitchell
,
N. P.
,
Nash
,
L. M.
, and
Irvine
,
W. T. M.
,
2018
, “
Tunable Band Topology in Gyroscopic Lattices
,”
Phys. Rev. B
,
98
(
17
), pp.
174301
174301
.
25.
Baz
,
A.
,
2020
, “
Active Synthesis of a Gyroscopic-Nonreciprocal Acoustic Metamaterial
,”
J. Acoust. Soc. Am.
,
148
(
3
), pp.
1271
1288
.
26.
Raval
,
S.
,
Zhou
,
H.
, and
Baz
,
A.
,
2021
, “
Experimental Implementation of an Active Synthesis of a Gyroscopic-Nonreciprocal Acoustic Metamaterial
,”
J. Appl. Phys.
,
129
(
7
), p.
074501
.
27.
Nise
,
N.
,
2019
,
Control Systems Engineering
, 8th ed.,
John Wiley & Sons, Inc.
,
Hoboken, NJ
, pp.
157
209
.
You do not currently have access to this content.