Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The rotating assemblies of critical machinery are complex dynamical systems and rotordynamic model response prediction inaccuracy risks machinery failure leading to high production losses. Jeffcott, Euler beam, and high-fidelity 3D solid finite element models are frequently utilized for rotordynamic analyses. Even though the 3D rotor has the higher accuracy, beam models are still widely used in industrial applications. To improve prediction accuracy of the lower-fidelity Jeffcott and beam models, a rotordynamics physics-informed neural network (R-PINN) is proposed. This models physics-informed long short-term memory (LSTM) neural networks that utilize partial or limited measured data, by incorporating physical laws. This approach enables the creation of a Digital Twin, which can produce additional data and help remove noise and outliers. In the current study, two R-PINNs are introduced to validate the superior capability of the model for both low- and high-fidelity physics. Random noise of 10% is introduced into the measured data produced by the Digital Twin to replicate real-world noisy measurements. The result shows that both low- and high-fidelity physics R-PINNs can achieve high accuracy even with high noise data, thereby increasing the robustness of the model. The results clearly demonstrate the ability of the proposed R-PINN algorithm to enhance an Euler beam model's predicted response to the level of accuracy of a 3D solid element model's predicted response, the latter acting as a surrogate for test measurements in an actual application.

References

1.
Shin
,
D.
, and
Palazzolo
,
A. B.
,
2020
, “
Nonlinear Analysis of a Geared Rotor System Supported by Fluid Film Journal Bearings
,”
J. Sound Vib.
,
475
, p.
115269
.
2.
Mortazavi
,
F.
, and
Palazzolo
,
A. B.
,
2018
, “
Prediction of Rotordynamic Performance of Smooth Stator-Grooved Rotor Liquid Annular Seals Utilizing Computational Fluid Dynamics
,”
ASME J. Vib. Acoust.
,
140
(
3
), p.
031002
.
3.
Filippi
,
M.
, and
Carrera
,
E.
,
2017
, “
Dynamic Analyses of Axisymmetric Rotors Through Three-Dimensional Approaches and High-Fidelity Beam Theories
,”
ASME J. Vib. Acoust.
,
139
(
6
), p.
061008
.
4.
Filippi
,
M.
,
Zappino
,
E.
, and
Carrera
,
E.
,
2019
, “
A Node-Dependent Kinematic Approach for Rotordynamics Problems
,”
ASME J. Eng. Gas Turbines Power
,
141
(
6
), p.
062501
.
5.
Filippi
,
M.
, and
Carrera
,
E.
,
2021
, “
Stability and Transient Analyses of Asymmetric Rotors on Anisotropic Supports
,”
J. Sound Vib.
,
500
, p.
116006
.
6.
Entezari
,
A.
,
Filippi
,
M.
, and
Carrera
,
E.
,
2017
, “
On Dynamic Analysis of Variable Thickness Disks and Complex Rotors Subjected to Thermal and Mechanical Prestresses
,”
J. Sound Vib.
,
405
, pp.
68
85
.
7.
Hochreiter
,
S.
, and
Schmidhuber
,
J.
,
1997
, “
Long Short-Term Memory
,”
Neural Comput.
,
9
(
8
), pp.
1735
1780
.
8.
Zhang
,
R.
,
Liu
,
Y.
, and
Sun
,
H.
,
2020
, “
Physics-Informed Multi-LSTM Networks for Metamodeling of Nonlinear Structures
,”
Comput. Methods Appl. Mech. Eng.
,
369
, p.
113226
.
9.
Sharadga
,
H.
,
Hajimirza
,
S.
, and
Balog
,
R. S.
,
2020
, “
Time Series Forecasting of Solar Power Generation for Large-Scale Photovoltaic Plants
,”
Renewable Energy
,
150
, pp.
797
807
.
10.
Grieves
,
M.
,
2014
, “
Digital Twin: Manufacturing Excellence Through Virtual Factory Replication
,” White Paper, 1, pp.
1
7
.
11.
Glaessgen
,
E. H.
, and
Stargel
,
D. S.
,
2012
, “
The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles
,”
53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
,
Honolulu, HI
,
Apr. 23–26
.
12.
Hochhalter
,
J. D.
,
Leser
,
W. P.
,
Newman
,
J. A.
,
Gupta
,
V. K.
,
Yamakov
,
V.
,
Cornell
,
S. R.
,
Willard
,
S. A.
, and
Heber
,
G.
,
2014
, “
Coupling Damage-Sensing Particles to the Digitial Twin Concept
,” NF1676L-18764.
13.
Wang
,
Y.
,
Tao
,
F.
,
Zhang
,
M.
,
Wang
,
L.
, and
Zuo
,
Y.
,
2021
, “
Digital Twin Enhanced Fault Prediction for the Autoclave With Insufficient Data
,”
J. Manuf. Syst.
,
60
, pp.
350
359
.
14.
Xia
,
M.
,
Shao
,
H.
,
Williams
,
D.
,
Lu
,
S.
,
Shu
,
L.
, and
de Silva
,
C. W.
,
2021
, “
Intelligent Fault Diagnosis of Machinery Using Digital Twin-Assisted Deep Transfer Learning
,”
Reliab. Eng. Syst. Safe.
,
215
, p.
107938
.
15.
Amer
,
M.
,
Wallaschek
,
J.
, and
Seume
,
J. R.
,
2022
, “
Operational Modal Analysis of an Axial Compressor Rotor and Casing System for the Online Identification of a Digital Twin
,”
Appl. Mech.
,
3
(
1
), pp.
244
258
.
16.
Oh
,
J.
,
Kim
,
B. J.
, and
Palazzolo
,
A.
,
2020
, “
Three-Dimensional Solid Finite Element Contact Model for Rotordynamic Analysis: Experiment and Simulation
,”
ASME J. Vib. Acoust.
,
143
(
3
), p.
031007
.
17.
Childs
,
D. W.
,
1993
,
Turbomachinery Rotordynamics
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
18.
Jeffcott
,
N.
,
1919
, “
Lateral Vibration of Laded Shafts in the Neighbourhood of a Whirling Speed – The Effect of Want of Balance
,”
Philos. Mag.
,
37
(
219
), pp.
304
314
.
19.
Palazzolo
,
A. B.
,
2016
,
Vibration Theory and Applications With Finite Elements and Active Vibration Control
,
Wiley
,
Chichester, UK
.
20.
Kim
,
B. J.
,
Oh
,
J.
, and
Palazzolo
,
A.
,
2022
, “
Test and Theory for a Refined Structural Model of a Hirth Coupling
,”
ASME J. Eng. Gas Turbines Power
,
144
(
3
), p.
031027
.
21.
Kim
,
B. J.
,
Oh
,
J.
, and
Palazzolo
,
A.
,
2022
, “
An Improved Preloaded Curvic Coupling Model for Rotordynamic Analyses
,”
J. Sound Vib.
,
544
(
3
), p.
117391
.
22.
Oh
,
J.
,
Palazzolo
,
A. B.
, and
Hu
,
L.
,
2020
, “
Stability of Non-Axisymmetric Rotor and Bearing Systems Modeled With Three-Dimensional-Solid Finite Elements
,”
ASME J. Vib. Acoust.
,
142
(
1
), p.
011010
.
23.
Genta
,
G.
,
2005
,
Dynamics of Rotating Systems
,
Springer
,
New York
.
24.
Hresko
,
A. S.
,
2019
, “
Experimental Investigation of Morton Effect (Thermally Induced Rotor Instability
,”
Master thesis
,
Texas A&M University
.
25.
Meirovith
,
L.
,
1989
,
Dynamics and Control of Structures
,
John Wiley and Sons
,
New York
.
26.
Yang
,
J.
, and
Palazzolo
,
A. B.
,
2019
, “
Three-Dimensional Thermo-Elasto-Hydrodynamic Computational Fluid Dynamics Model of a Tilting Pad Journal Bearing—Part II: Dynamic Response
,”
ASME J. Tribol.
,
141
(
6
), p.
061703
.
27.
de Jongh
,
F.
, and
van der Hoeven
,
P.
,
1998
, “
Application of a Heat Barrier Sleeve to Prevent Synchronous Rotor Instability
,”
27th Turbomachinery Symposium
,
Sept.
, pp.
17
26
.
28.
Yang
,
J.
, and
Palazzolo
,
A. B.
,
2019
, “
Three-Dimensional Thermo-Elasto-Hydrodynamic Computational Fluid Dynamics Model of a Tilting Pad Journal Bearing—Part I: Static Response
,”
ASME J. Tribol.
,
141
(
6
), p.
061702
.
29.
Yang
,
J.
, and
Palazzolo
,
A. B.
,
2023
, “
Morton Effect Prediction With Validation Using a CFD Based CNN for Pad Inlet Temperatures
,”
Mech. Syst. Signal Process
,
185
, p.
109827
.
30.
Yang
,
J.
, and
Palazzolo
,
A. B.
,
2022
, “
Deep Convolutional Autoencoder Augmented CFD Thermal Analysis of Bearings With Inter Pad Groove Mixing
,”
Int. J. Heat Mass Transfer
,
188
, p.
122639
.
You do not currently have access to this content.