Abstract

Strongly nonlinear structures have attracted a great deal of attention in energy harvesting and vibration isolation recently. However, it is challenging to accurately characterize the nonlinear restoring force using analytical modeling or cyclic loading tests in many realistic conditions due to the uncertainty of installation parameters or other constraints, including space size and dynamic disturbance. Therefore, a displacement-measurement restoring force surface identification approach is presented for obtaining the nonlinear restoring force. Widely known quasi-zero stiffness, bistable, and tristable structures are designed in a cantilever-beam system with coupled rotatable magnets to illustrate the strongly nonlinear properties in the application of energy harvesting and vibration isolation. Based on the derived physical model of the designed strongly nonlinear structures, the displacement-measurement restoring force surface identification with a least-squares parameter fitting is proposed to obtain the parameters of the nonlinear restoring force. The comparison between the acceleration integration and displacement differentiation methods for describing the restoring force surface of strongly nonlinear structures is discussed. Besides, the influence of the noise level on identification accuracy is investigated. In experimental conditions, quasi-zero stiffness, bistable, and tristable nonlinear structures with various geometrical parameters are utilized to analyze the identified nonlinear restoring force curve and measured force–displacement trajectory. Finally, experimental results verify the effectiveness of the displacement–measurement restoring force surface method to obtain the nonlinear restoring force.

References

1.
Carrella
,
A.
,
Brennan
,
M. J.
,
Waters
,
T. P.
, and
Lopes
,
V. J.
,
2012
, “
Force and Displacement Transmissibility of a Nonlinear Isolator With High-Static-Low-Dynamic-Stiffness
,”
Int. J. Mech. Sci.
,
55
(
1
), pp.
22
29
.
2.
Johnson
,
D. R.
,
Harne
,
R. L.
, and
Wang
,
K. W.
,
2011
, “
A Disturbance Cancellation Perspective on Vibration Control Using a Bistable Snap-Through Attachment
,”
ASME J. Vib. Acoust.
,
136
(
3
), p.
031006
.
3.
Sun
,
X. T.
, and
Jing
,
X. J.
,
2015
, “
Multi-Direction Vibration Isolation With Quasi-Zero Stiffness by Employing Geometrical Nonlinearity
,”
Mech. Syst. Signal Process
,
62
, pp.
149
163
.
4.
Jing
,
X. J.
,
Zhang
,
L. L.
,
Jing
,
G. Q.
,
Feng
,
X.
,
Guo
,
Y. Q.
, and
Xu
,
Z. D.
,
2019
, “
Critical Factors in Designing a Class of X-Shaped Structures for Vibration Isolation
,”
Eng. Struct.
,
199
, p.
109659
.
5.
Zhou
,
J. X.
,
Wang
,
X. L.
,
Xu
,
D.
, and
Bishop
,
S.
,
2015
, “
Nonlinear Dynamic Characteristics of a Quasi-Zero Stiffness Vibration Isolator With Cam-Roller-Spring Mechanisms
,”
J. Sound Vib.
,
346
, pp.
53
69
.
6.
Yao
,
Y. H.
,
Li
,
H. G.
,
Li
,
Y.
, and
Wang
,
X. J.
,
2020
, “
Analytical and Experimental Investigation of a High-Static-Low-Dynamic Stiffness Isolator With Cam-Roller-Spring Mechanism
,”
Int. J. Mech. Sci.
,
186
, p.
105888
.
7.
Zhang
,
J. T.
,
Zhang
,
J.
,
Shu
,
C.
, and
Fang
,
Z.
,
2017
, “
Enhanced Piezoelectric Wind Energy Harvesting Based on a Buckled Beam
,”
Appl. Phys. Lett.
,
110
(
18
), p.
183903
.
8.
Liu
,
X. T.
,
Huang
,
X. C.
, and
Hua
,
H. X.
,
2013
, “
On the Characteristics of a Quasi-Zero Stiffness Isolator Using Euler Buckled Beam as Negative Stiffness Corrector
,”
J. Sound Vib.
,
332
(
14
), pp.
3359
3376
.
9.
Zhou
,
S. X.
,
Cao
,
J. Y.
,
Erturk
,
A.
, and
Lin
,
J.
,
2013
, “
Enhanced Broadband Piezoelectric Energy Harvesting Using Rotatable Magnets
,”
Appl. Phys. Lett.
,
102
(
17
), pp.
101301
R21
.
10.
Cao
,
J. Y.
,
Zhou
,
S. X.
,
Inman
,
D. J.
, and
Lin
,
J.
,
2015
, “
Nonlinear Dynamic Characteristics of Variable Inclination Magnetically Coupled Piezoelectric Energy Harvesters
,”
ASME J. Vib. Acoust.
,
137
(
2
), p.
021015
.
11.
Jing
,
X. J.
,
Zhang
,
L. L.
,
Feng
,
X.
, and
Li
,
A. K.
,
2019
, “
A Novel Bio-Lnspired Anti-Vibration Structure for Operating Hand-Held Jackhammers
,”
Mech. Syst. Signal Process
,
118
, pp.
317
339
.
12.
Stanton
,
S. C.
,
McGehee
,
C. C.
, and
Mann
,
B. P.
,
2010
, “
Nonlinear Dynamics for Broadband Energy Harvesting: Investigation of a Bistable Piezoelectric Inertial Generator
,”
Phys. D
,
239
(
10
), pp.
640
653
.
13.
Wang
,
G. Q.
,
Zhao
,
Z. X.
,
Liao
,
W. H.
,
Tan
,
J. P.
,
Ju
,
Y.
, and
Li
,
Y.
,
2020
, “
Characteristics of a Tri-Stable Piezoelectric Vibration Energy Harvester by Considering Geometric Nonlinearity and Gravitation Effects
,”
Mech. Syst. Signal Process
,
138
, pp.
1
18
.
14.
Zhang
,
Y.
,
Cao
,
J. Y.
,
Wang
,
W.
, and
Liao
,
W. H.
,
2020
, “
Enhanced Modeling of Nonlinear Restoring Force in Multi-Stable Energy Harvesters
,”
J. Sound Vib.
,
494
, p.
115890
.
15.
Leadenham
,
S.
, and
Erturk
,
A.
,
2015
, “
Nonlinear M-Shaped Broadband Piezoelectric Energy Harvester for Very Low Base Accelerations: Primary and Secondary Resonances
,”
Smart Mater. Struct.
,
24
(
5
), p.
55021
.
16.
Noël
,
J. P.
, and
Kerschen
,
G.
,
2017
, “
Nonlinear System Identification in Structural Dynamics: 10 More Years of Progress
,”
Mech. Syst. Signal Process
,
83
, pp.
2
35
.
17.
Marchesiello
,
S.
, and
Garibaldi
,
L.
,
2008
, “
A Time Domain Approach for Identifying Nonlinear Vibrating Structures by Subspace Methods
,”
Mech. Syst. Signal Process
,
22
(
1
), pp.
81
101
.
18.
Noël
,
J. P.
,
Marchesiello
,
S.
, and
Kerschen
,
G.
,
2014
, “
Subspace-Based Identification of a Nonlinear Spacecraft in the Time and Frequency Domains
,”
Mech. Syst. Signal Process
,
43
(
1-2
), pp.
217
236
.
19.
Filippis
,
G. D.
,
Noël
,
J. P.
,
Kerschen
,
G.
,
Soria
,
L.
, and
Stephan
,
C.
,
2016
, “
Experimental Nonlinear Identification of an Aircraft With Bolted Connections
,”
Proceedings of the XXXIII International Modal Analysis Conference
,
Orlando, FL
, pp.
263
278
.
20.
Noël
,
J. P.
, and
Kerschen
,
G.
,
2013
, “
Frequency-Domain Subspace Identification of Nonlinear Mechanical Systems—Application to a Solar Array Structure
,”
Mech. Syst. Signal Process
,
40
(
2
), pp.
701
717
.
21.
Masri
,
S. F.
, and
Caughey
,
T. K.
,
1979
, “
A Nonparametric Identification Technique for Nonlinear Dynamic Problems
,”
ASME J. Appl. Mech.
,
46
(
2
), pp.
433
447
.
22.
Crawley
,
E. F.
, and
Aubert
,
A. C.
,
1986
, “
Identification of Nonlinear Structural Elements by Force-State Mapping
,”
AIAA J.
,
24
(
1
), pp.
155
162
.
23.
Al-Hadid
,
M.
, and
Wright
,
J. R.
,
1990
, “
Application of the Force-State Mapping Approach to the Identification of Non-Linear Systems
,”
Mech. Syst. Signal Process
,
4
(
6
), pp.
463
482
.
24.
Worden
,
K.
,
1990
, “
Data Processing and Experiment Design for the Restoring Force Surface Method, Part I: Integration and Differentiation of Measured Time Data
,”
Mech. Syst. Signal Process
,
4
(
4
), pp.
295
319
.
25.
Worden
,
K.
,
1990
, “
Data Processing and Experiment Design for the Restoring Force Surface Method, Part II: Choice of Excitation Signal
,”
Mech. Syst. Signal Process
,
4
(
4
), pp.
321
344
.
26.
Kerschen
,
G.
, and
Golinval
,
J. C.
,
2001
, “
Theoretical and Experimental Identification of a Non-Linear Beam
,”
J. Sound Vib.
,
244
(
4
), pp.
597
613
.
27.
Kerschen
,
G.
,
Lenaerts
,
V.
, and
Golinval
,
J. C.
,
2003
, “
VTT Benchmark: Application of the Restoring Force Surface Method
,”
Mech. Syst. Signal Process
,
17
(
1
), pp.
189
193
.
28.
Allen
,
M. S.
,
Sumali
,
H.
, and
Epp
,
D. S.
,
2008
, “
Piecewise-Linear Restoring Force Surfaces for Semi-Nonparametric Identification of Nonlinear Systems
,”
Nonlinear Dyn.
,
54
(
1
), pp.
123
135
.
29.
Noël
,
J. P.
,
Renson
,
L.
, and
Kerschen
,
G.
,
2014
, “
Complex Dynamics of a Nonlinear Aerospace Structure: Experimental Identification and Modal Interactions
,”
J. Sound Vib.
,
333
(
12
), pp.
2588
2607
.
30.
Noël
,
J. P.
,
Renson
,
L.
,
Kerschen
,
G.
,
Peeters
,
B.
,
Manzato
,
S.
, and
Debille
,
J.
,
2013
, “
Nonlinear Dynamic Analysis of an F-16 Aircraft Using GVT Data
,”
Proceedings of the International Forum on Aeroelasticity and Structural Dynamics
,
Leuven, Belgium
, pp.
1
13
.
31.
Fuellekrug
,
U.
, and
Goege
,
D.
,
2012
, “
Identification of Weak Non-Linearities Within Complex Aerospace Structures
,”
Aerosp. Sci. Technol.
,
23
(
1
), pp.
53
62
.
32.
Moore
,
K. J.
,
Kurt
,
M.
,
Eriten
,
M.
,
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2019
, “
Time-Series Based Nonlinear System Identification of Modal Interactions Caused by Strongly Nonlinear Attachments
,”
J. Sound Vib.
,
438
, pp.
13
32
.
33.
Friswell
,
M. I.
,
Ali
,
S. F.
,
Bilgen
,
O.
,
Adhikari
,
S.
,
Arthur
,
W. L.
, and
Litak
,
G.
,
2013
, “
Non-Linear Piezoelectric Vibration Energy Harvesting From a Vertical Cantilever Beam With Tip Mass
,”
J. Intell. Mater. Syst. Struct.
,
23
(
13
), pp.
1505
1521
.
34.
Feldman
,
M.
,
2012
, “
Nonparametric Identification of Asymmetric Nonlinear Vibration Systems With the Hilbert Transform
,”
J. Sound Vib.
,
331
(
14
), pp.
3386
3396
.
35.
Yuan
,
T. C.
,
Yang
,
J.
, and
Chen
,
L. Q.
,
2018
, “
Nonparametric Identification of Nonlinear Piezoelectric Mechanical Systems
,”
ASME J. Appl. Mech.
,
85
(
11
), p.
111008
.
36.
Xu
,
B.
,
He
,
J.
, and
Masri
,
S. F.
,
2012
, “
Data-Based Identification of Nonlinear Restoring Force Under Spatially Incomplete Excitations With Power Series Polynomial Model
,”
Nonlinear Dyn.
,
67
(
3
), pp.
2063
2080
.
37.
Huang
,
D. M.
,
Zhou
,
S. X.
,
Li
,
W.
, and
Litak
,
G.
,
2020
, “
On the Stochastic Response Regimes of a Tristable Viscoelastic Isolation System Under Delayed Feedback Control
,”
Sci. China: Technol. Sci.
,
64
(
4
), pp.
858
868
.
38.
Zhou
,
S. X.
, and
Zuo
,
L.
,
2018
, “
Nonlinear Dynamic Analysis of Asymmetric Tristable Energy Harvesters for Enhanced Energy Harvesting
,”
Commun. Nonlinear Sci. Numer. Simul.
,
61
, pp.
271
284
.
You do not currently have access to this content.